精英家教网 > 高中数学 > 题目详情
12.如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1B1BA,且AA1=AB=BC=2,则AC与平面A1BC所成角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 证明AD⊥平面A1BC,得出∠ACD即为直线AC与平面A1BC所成的角,求出AC=$\sqrt{2}$,AD=$\frac{\sqrt{2}}{2}$,即可得出结论.

解答 解:如图,AB1∩A1B=D,连结CD,
∵AA1=AB,∴AD⊥A1B,
∵平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,
∴AD⊥平面A1BC,
则CD是AC在平面A1BC内的射影,
∴∠ACD即为直线AC与平面A1BC所成的角,
又BC?平面A1BC,
所以AD⊥BC,
因为三棱柱ABC---A1B1C1是直三棱柱,
则AA1⊥底面ABC,
所以AA1⊥BC.
又AA1∩AD=A,从而BC⊥侧面A1ABB1
又AB?侧面A1ABB1,故AB⊥BC
∵AA1=AB=BC=2,∴AC=$\sqrt{2}$,AD=$\frac{\sqrt{2}}{2}$
∴sin∠ACD=$\frac{1}{2}$,∴∠ACD=$\frac{π}{6}$,
故选A.

点评 本题考查直线与平面垂直的判定定理的应用,直线与平面所成角的求法,考查计算能力以及逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的两条渐进线为l1、l2,且l1与x轴所成的夹角为30°,且双曲线的焦距为$4\sqrt{2}$.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l,l与椭圆C相交于A、B,与圆O:x2+y2=a2相交于D、E两点,当△OAB的面积最大时,求弦DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,b=3,c=3,B=30°,则a的值为(  )
A.3B.23C.3$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的左右焦点分别为F1,F2,过F1的直线与左支相交于A,B两点,如果|AF2|+|BF2|=2|AB|,则|AB|=$4\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.由经验得知,在学校食堂某窗口处排队等候打饭的人数及其概率如下:
排队人数012345人以上
概率0.10.160.30.30.10.04
则至多2个人排队的概率为(  )
A.0.56B.0.44C.0.26D.0.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设命题p:m∈{x|x2+(a-8)x-8a≤0},命题q:方程$\frac{{x}^{2}}{m-3}$+$\frac{{y}^{2}}{5-m}$=1表示焦点在x轴上的双曲线.
(1)若当a=1时,命题p∧q假命题,p∨q”为真命题,求实数m的取值范围;
(2)若命题p是命题q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=2sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期为$\frac{2π}{3}$,则ω=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知函数f(x)=2x+$\frac{1}{x}$(x>0),证明函数f(x)在(0,$\frac{\sqrt{2}}{2}$)上单调递减,并写出函数f(x)的单调递增区间;
(2)记函数g(x)=a|x|+2ax(a>1)
①若a=4,解关于x的方程g(x)=3;
②若x∈[-1,+∞),求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{x}{{{x^2}+1}}+1$,g(x)=x2eax(a<0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对任意x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案