精英家教网 > 高中数学 > 题目详情
设x,y满足约束条件
x+y-7≤0
x-3y+1≤0
3x-y-5≥0
,则z=2x-y的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.
解答: 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=2x-y得y=2x-z,
平移直线y=2x-z,
由图象可知当直线y=2x-z经过点A时,直线y=2x-z的截距最小,
此时z最大.
x+y-7=0
x-3y+1=0
,解得
x=5
y=2
,即A(5,2)
将A的坐标代入目标函数z=2x-y,
得z=2×5-2=8.即z=2x-y的最大值为8.
故答案为:8
点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为(4,
π
3
),则|CP|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义域为R,当x>0时,f(x)>1,且对任意x,y∈R,都有f(x+y)=f(x)•f(y).
(1)求f(0)的值;
(2)求证:对任意x∈R,都有f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x+y≤1
x-y≥-1
y≥0
表示的平面区域为M,若直线y=kx-3k与平面区域M有公共点,则k取值范围是(  )
A、(0,
1
3
]
B、(-∞,
1
3
]
C、[-
1
3
,0]
D、(-∞,
1
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是△ABC边BC上任意一点,且2
AN
=
NM
,若
AN
AB
AC
,则λ+μ的值为(  )
A、
1
4
B、
1
3
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
=0
|
a
+
b
|=t|
a
|
,若
a
+
b
a
-
b
的夹角为
3
,则t的值为(  )
A、1
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,满足f(x)+f(-x)=0,f(x-1)=f(x+1),当x∈[0,1)时,f(x)=3x-1,则f(log 
1
3
12)的值为(  )
A、-
11
12
B、-
1
4
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD的三个顶点A,B,C分别在函数y=log 
2
2
x,y=x 
1
2
,y=(
2
2
x的图象上,且矩形的边分别平行于两坐标轴,若点A的纵坐标为2,则的D的坐标为(  )
A、(
1
2
1
4
B、(
1
2
2
2
C、(
1
4
1
16
D、(
1
4
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,周长为20,面积为10,∠A=60°,则边a=
 

查看答案和解析>>

同步练习册答案