精英家教网 > 高中数学 > 题目详情
5.在“走近世博”的展示活动中,高一年级同学需用一个面积为8平方矩形场地,矩形场地的一边利用墙边,其余三边用红绳围成,两端接头要固定在墙上每边还需0.2米,怎样设计才能使所用的红绳最短?最短为多少米?

分析 设平行于墙的一边长为x米,另一边长为y,则xy=8,红绳长为0.4+x+2y,利用基本不等式,即可得出结论.

解答 解:设平行于墙的一边长为x米,另一边长为y,则xy=8,
红绳长为0.4+x+2y≥0.4+2$\sqrt{2xy}$=8.4,
∴红绳长最短为8.4米,此时x=4米,y=2米.

点评 本题考查基本不等式的运用,考查学生利用数学知识解决实际问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=1ogax(0<a<1)在区间[a,3a]上的最大值是最小值的2倍,则a=(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{3}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=(a2+2)x2-2ax
(1)解关于x的不等式f(x)≤0
(2)若函数f(x)有两个零点x1,x2,求|x1-x2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.集合A=(-∞,-1)∪(1,+∞),B={x|2x2+(2k+1)x+3k<0},若满足(A∩B)∩Z={2},求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,a5-2b2=a3
(I)求数列{an}和{bn}通项公式;
(Ⅱ)令cn=$\frac{1}{2{S}_{n}}$+bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某工厂生产一种电脑元件,每月的生产数据如表:
月份123
产量(千件)505253.9
为估计以后每月该电脑元件的产量,以这三个月的产量为依据,用函数y=ax+b或y=ax+b(a,b为常数,且a>0)来模拟这种电脑元件的月产量y千件与月份的关系,请问:用以上哪个模拟函数较好?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=lg[(m-1)x2-2x+1]的值域为R.则实数m的取值范围为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=1,a2=2,数列{bn}满足bn=an+1+(-1)n,n∈N*
(1)若数列{an}是等差数列,求数列{bn}的前6项和S6
(2)若数列{bn}是公差为2的等差数列,求数列{an}的通项公式;
(3)若b2n-b2n-1=0,b2n+1+b2n=$\frac{6}{{2}^{n}}$,n∈N*,求数列{an}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知二次函数f(x)满足2f(x-1)-f(x)=x2-6x+9,求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案