精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,

侧棱平面为等腰直角三角形,,且分别是的中点.

Ⅰ)求证:平面

平面

Ⅱ)求直线与平面所成角.

【答案】见解析;(.

【解析】试题分析:(Ⅰ)第一问,先证明,即可证明平面;证明,即可证明平面. (Ⅱ)第二问,先证明即为直线与平面所成角. 再解,即可得到直线与平面所成角.

试题解析:)①连接故点G即为的交点

G的中点,又F的中点

GF平面 平面平面

因为是等腰直角三角形斜边的中点,所以

因为三棱柱为直三棱柱,所以面

所以

,则

所以,所以

所以平面

(Ⅱ)由(1)知在平面上的投影为,故在平面上的投影落在AF上.所以即为直线与平面所成角.

由题知:不妨设,所以

中,

所以,即直线与平面所成角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知ABC是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且,|BC|=2|AC|.

(1)求椭圆E的方程;

(2)在椭圆E上是否存点Q,使得?若存在,有几个(不必求出Q点的坐标),若不存在,请说明理由.

(3)过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为MN,若直线MNx轴、y轴上的截距分别为mn,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】扬州大学数学系有6名大学生要去甲、乙两所中学实习,每名大学生都被随机分配到两所中学的其中一所.

(1)求6名大学生中至少有1名被分配到甲学校实习的概率;

(2)设分别表示分配到甲、乙两所中学的大学生人数,记,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校的特长班有名学生,其中有体育生名,艺术生名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于次/分到次/分之间.现将数据分成五组,第一组,第二组,…,第五章,按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为.

(1)求的值并求这名同学心率的平均值

(2)因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若从第一组和第二组的学生中随机抽取一名,该学生是体育生的概率为,请将下面的列联表补充完整,并判断是否有的把握认为心率小于次/分与常年进行系统的身体锻炼有关?说明你的理由.

心率小于60次/分

心率不小于60次/分

合计

体育生

20

艺术生

30

合计

50

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面平面.

(1)证明:

(2)若是正三角形,,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数. 若曲线y=在点P(e,f(e))处的切线方程为y=2x-e(为自然对数的底数).

(Ⅰ)求函数的单调区间;

(Ⅱ)若,试比较的大小,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的拆线图.

(1)由拆线图可以看出,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程,并预测公司2017年4月份(即时)的市场占有率;

(2)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:

车型 报废年限

1年

2年

3年

4年

总计

20

35

35

10

100

10

30

40

20

100

经测算,平均每辆单车每年可以带来收入500元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率.如果你是 公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?

(参考公式:回归直线方程为,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线处的切线与直线垂直,求的值;

(2)讨论函数的单调性;若存在极值点,求实数的取值范围.

查看答案和解析>>

同步练习册答案