A. | 2n-1 | B. | n | C. | ${(\frac{n+1}{n})^{n-1}}$ | D. | n2 |
分析 an=n(an+1-an),可得$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,利用“累乘求积”即可得出.
解答 解:∵an=n(an+1-an),
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,
∴an=$\frac{{a}_{n}}{{a}_{n-1}}•\frac{{a}_{n-1}}{{a}_{n-2}}$•…•$\frac{{a}_{2}}{{a}_{1}}$•a1
=$\frac{n}{n-1}•\frac{n-1}{n-2}$•…•$\frac{2}{1}$•1
=n,
故选:B.
点评 本题考查了递推关系的应用、“累乘求积”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | ( 0,$\frac{\sqrt{6}{a}^{2}}{2}$) | B. | (0,$\frac{3\sqrt{3}{a}^{2}}{4}$] | C. | (0,$\frac{5{a}^{2}}{4}$) | D. | (0,$\frac{\sqrt{6}{a}^{2}}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若|f(x1)|=|f(x2)|,则x1=x2+kπ(k∈Z) | B. | f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上单调递增 | ||
C. | 函数f(x)的周期为π | D. | f(x)的图象关于点$(-\frac{π}{2},0)$成中心对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | “若a>1,a2>1”的否命题是“若a>1,a2≤1” | |
B. | {an}为等比数列,则“a1<a2<a3”是“a4<a5”的既不充分也不必要条件 | |
C. | ?x0∈(-∞,0),使${3^{x_0}}<{4^{x_0}}$成立 | |
D. | “若$tanα≠\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com