精英家教网 > 高中数学 > 题目详情
已知在平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为

⑴求该椭圆的标准方程;
⑵若P是椭圆上的动点,求线段PA中点M的轨迹方程;
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,F是椭圆的左焦点,P是椭圆上一点,PF⊥x轴,OP∥AB,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求椭圆25x2+y2=25的长轴和短轴的长、焦点和顶点坐标及离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题






(Ⅰ)设椭圆上的点到两点距离之和等于,写出椭圆的方程和焦点坐标;
(Ⅱ)设是(1)中所得椭圆上的动点,求线段的中点的轨迹方程;
(Ⅲ)设点是椭圆上的任意一点,过原点的直线与椭圆相交于两点,当直线 , 的斜率都存在,并记为 ,试探究的值是否与点及直线有关,不必证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知椭圆的离心率为,点是椭圆上一定点,若斜率为的直线与椭圆交于不同的两点.
(I)求椭圆方程;(II)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的两个焦点为,点在椭圆上,

(1)求椭圆的方程;
(2)试确定的取值范围,使得椭圆上有两个不同的点关于直线对称.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求适合下列条件的椭圆的标准方程:
(1)两个焦点坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);
(2)焦点在y轴上,且经过两个点(0,2)和(1,0);
(3)经过P(-2,1),Q(,-2)两点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:),其离心率为,两准线之间的距离为。(1)求之值;(2)设点A坐标为(6, 0),B为椭圆C上的动点,以A为直角顶点,作等腰直角△ABP(字母A,B,P按顺时针方向排列),求P点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点和短轴的两个端点构成一个正三角形,则该椭圆的离心率为(    )
A.B.
C.D.以上都不正确

查看答案和解析>>

同步练习册答案