精英家教网 > 高中数学 > 题目详情
用秦九韶算法计算多项式f(x)=8x4+5x3+3x2+2x+1在x=2时的值时,v2=
45
45
分析:首先把一个n次多项式f(x)写成(…((anx+a n-1)x+an-2)x+…+a1)x+a0的形式,然后化简,求n次多项式f(x)的值就转化为求n个一次多项式的值,求出V2的值.
解答:解:∵f(x)=8x4+5x3+3x2+2x+1=(((8x+5)x+3)x+2)x+1
∴v0=8;
v1=8×2+5=21;
v2=21×2+3=45.
故答案为:45.
点评:本题考查秦九韶算法与算法的多样性,解答本题,关键是了解秦九韶算法的规则,求出v2的表达式
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用秦九韶算法计算当x=2时,多项函数f(x)=3x3+7x2-9x+5的值为_______________.

查看答案和解析>>

同步练习册答案