精英家教网 > 高中数学 > 题目详情
9.已知cosα=$\frac{1}{2}$,且α是第一象限角,求sinα和tanα的值.

分析 由条件利用同角三角函数的基本关系,求得sinα和tanα的值.

解答 解:∵cosα=$\frac{1}{2}$,且α是第一象限角,
∴sinα=$\sqrt{1-{cos}^{2}α}$=$\frac{\sqrt{3}}{2}$,
∴tanα=$\frac{sinα}{cosα}$=$\sqrt{3}$.

点评 本题主要考查同角三角函数的基本关系、三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.有四个元素:1+$\sqrt{2}$π,$\sqrt{11+6\sqrt{2}}$,1,$\frac{1}{2+\sqrt{2}}$,其中不属于集合M={x|x=a+b$\sqrt{2}$,a,b∈Q}的是1+$\sqrt{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l1:x+y+2=0,l:x+2y=0,求l1关于l的对称直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求与直线3x+4y+5=0平行,且在两坐标轴上,其截距一个是另一个2倍的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sinα=0.2,则sin(-α)的值为(  )
A.0.2B.-0.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列属于第二象限的角是(  )
A.-181°B.181°C.-370°D.370°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足:a1=2,an+1-2an=2n+1
(1)求证:数列{$\frac{{a}_{n}}{{2}^{n}}$}为等差数列,并求{an}的通项公式.
(2)若数列{bn}满足bn=$\frac{{a}_{n}}{{2}^{n}}$•cos(n+1)π,Sn为数列{bn}的前n项和,若对任意x∈N*.Sn<λn2恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知α,β为锐角,且tanα=$\frac{1}{7}$,sinβ=$\frac{3}{5}$,则α+β等于(  )
A.$\frac{3π}{4}$B.$\frac{2π}{3}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.分段函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x}&{x<0}\\{-{x}^{2}}&{x≥0}\end{array}\right.$,若f[f(a)]≤a,求a的取值范围.

查看答案和解析>>

同步练习册答案