精英家教网 > 高中数学 > 题目详情

【题目】给定函数,若对于定义域中的任意,都有 恒成立,则称函数为“爬坡函数”.

(Ⅰ)证明:函数是“爬坡函数”;

(Ⅱ)若函数是“爬坡函数”,求实数的取值范围;

(Ⅲ)若对任意的实数,函数都不是“爬坡函数”,求实数的取值范围.

【答案】(1)见解析(2)(3)

【解析】

(1)根据爬坡函数的定义直接利用作差法证明恒成立即可;(2)由题意可知恒成立,利用换元思想 ,即为,分别讨论对称轴求出函数的最小值即可;(3)由题意可知对任意的实数,存在使得成立相当于有两不相等的实根利用二次函数的性质以及一元二次方程根与系数的关系列不等式可得结果.

恒成立

爬坡函数

Ⅱ)依题意得恒成立,令

恒成立

,即,则只需满足

,即,则只需满足

综上所述,实数的取值范围为

Ⅲ)根据题意可得到,对任意的实数,存在,使得成立

恒成立 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=.

(1)判断函数f(x)的奇偶性;

(2)判断并用定义证明函数f(x)在其定义域上的单调性.

(3)若对任意的t1,不等式f()+f()<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,且f(α)=1,α∈(0, ),则cos(2 )=( )

A.
B.
C.﹣
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex﹣lnx.
(参考数据:e≈2.718,ln2≈0.693,ln3≈1.099,ln5≈1.609,ln7≈1.946)
(1)求证:函数f(x)有且只有一个极值点x0
(2)求函数f(x)的极值点x0的近似值x′,使得|x′﹣x0|<0.1;
(3)求证:f(x)>2.3对x∈(0,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市“招手即停”公共汽车的票价按下列规则制定:

5公里以内(含5公里),票价2元;

5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,请根据题意.

(1)写出票价与里程之间的函数解析式;

(2)根据(1)写出的函数解析式试画出该函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(1)=1,且对任意的x∈R,都有f′(x)< ,则不等式f(log2x)> 的解集为(
A.(1,+∞)
B.(0,1)
C.(0,2)
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱猪ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,A1A=AB=2,E为棱AA1的中点.

(1)证明:B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图给出的是计算 + + +…+ + 的值的程序框图,其中判断框内应填入的是(

A.i≤4030?
B.i≥4030?
C.i≤4032?
D.i≥4032?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在x轴正半轴上的圆C与直线相切,与y轴交于MN两点,且

求圆C的标准方程;

过点的直线l与圆C交于不同的两点DE,若时,求直线l的方程;

已知Q是圆C上任意一点,问:在x轴上是否存在两定点AB,使得?若存在,求出AB两点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案