精英家教网 > 高中数学 > 题目详情

【题目】直线y=kx﹣4,k>0与抛物线y2=2 x交于A,B两点,与抛物线的准线交于点C,若AB=2BC,则k=( )
A.
B.
C.2
D.

【答案】A
【解析】解:如图,过AB两点作抛物线的准线抛物线的准线的垂线,设A(x1 , y1),B(x2 , y2),
,整理得:k2x2﹣(8k+2 )x+16=0,
则x1+x2= ,x1x2=
显然△CB′B∽△CA′A,则 = =
由抛物线的定义得: = =
= ,整理得:4x2=(x1+x2)﹣
∴x2=
则x1= + ,由x1x2= ,则( + )( )= ,由k>,0解得:k=
或将选项一一代入验证,只有A成立,
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合,设

2,3,4,5,2,3,4,5,,分别求S的值;

若集合A中所有元素之和为55,求S的最小值;

若集合A中所有元素之和为103,求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数

(Ⅰ)若的最大值为,求实数的值;

(Ⅱ)对于任意的,总有.求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5)[0.5,1)[4,4.5]分成9组,制成了如图所示的频率分布直方图.

)求直方图中a的值;

)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣(2a﹣1)x﹣lnx.
(1)当a>0时,求函数f(x)的单调递增区间;
(2)当a<0时,求函数f(x)在 上的最小值;
(3)记函数y=f(x)的图象为曲线C,设点A(x1 , y1),B(x2 , y2)是曲线C上的不同两点,点M为线段AB的中点,过点M作x轴的垂直交曲线C于点N,判断曲线C在点N处的切线是否平行于直线AB,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求的单调递增区间;

(2)若函数上只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:(x-2)(xm)≤0,qx2+(1-m)xm≤0.

(1)若m=3,命题“pq”为真命题,求实数x的取值范围.

(2)若pq的必要不充分条件,求实数m的取范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是  

A. 至少有一个白球;都是白球 B. 至少有一个白球;至少有一个红球

C. 至少有一个白球;红、黑球各一个 D. 恰有一个白球;一个白球一个黑球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.

(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;

(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少? (圆柱体积公式:为圆柱的底面枳,为圆柱的高)

查看答案和解析>>

同步练习册答案