精英家教网 > 高中数学 > 题目详情
分解因式:
(1)2x2-7x+3;
(2)(x2+2x)2-7(x2+2x)-8;
(3)x2+2x-15-ax-5a.
分析:(1)由十字相乘法或求根公式法皆可分解因式.
(2)把x2+2x看做一个整体t,相当于先分解t2-7t-8,进而再进一步分解即可.
(3)先分组分解,把x2+2x-15与-ax-5a分成两组,再提取公因式即可.
解答:解:(1)由十字相乘法得:

∴2x2-7x+3=(2x-1)(x-3).
(2)把x2+2x看做一个整体,则(x2+2x)2-7(x2+2x)-8=(x2+2x-8)(x2+2x+1)=(x+4)(x-2)(x+1)2
(3)∵x2+2x-15=(x+5)(x-3),
∴x2+2x-15-ax-5a=(x+5)(x-3)-a(x+5)=(x+5)(x-3-a).
点评:利用十字相乘法和求根公式法是因式分解常用的方法,要求熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求sin30°-tan0°+ctg
π
4
-cos2
6
的值

(3)求函数y=
lg(25-5x)
x+1
的定义域.
(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积.
(5)计算:10(2+
5
)-1-(
1
500
)-
1
2
+30(
125
9
)
1
2
(
5
3
)
1
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求数学公式
(3)求函数y=数学公式的定义域.
(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积.
(5)计算:数学公式的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求sin30°-tan0°+ctg
π
4
-cos2
6
的值

(3)求函数y=
lg(25-5x)
x+1
的定义域.
(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积.
(5)计算:10(2+
5
)-1-(
1
500
)-
1
2
+30(
125
9
)
1
2
(
5
3
)
1
2
的值.

查看答案和解析>>

科目:高中数学 来源:1978年全国统一高考数学试卷(附加题)(解析版) 题型:解答题

(1)分解因式:x2-2xy+y2+2x-2y-3.
(2)求
(3)求函数y=的定义域.
(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积.
(5)计算:的值.

查看答案和解析>>

同步练习册答案