精英家教网 > 高中数学 > 题目详情

【题目】设椭圆C: =1(α>b>0)经过点( ),且原点、焦点,短轴的端点构成等腰直角三角形.
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线(切线斜率存在)与椭圆C恒有两个交点A,B.且 ?若存在,求出该圆的方程,若不存在说明理由.

【答案】
(1)解:∵原点、焦点,短轴的端点构成等腰直角三角形,∴b=c,

∵椭圆C: =1(α>b>0)经过点( ),∴ =1,

联立 ,解得b=c=2,a2=8.

∴椭圆E的方程为 =1


(2)解:假设存在圆心在原点的圆,使得该圆的任意一条切线(切线斜率存在)与椭圆C恒有两个交点A,B.且

设圆的方程为:x2+y2=r2,(0<r<2).

设圆的切线为y=kx+m,则 =r,A(x1,y1),B(x2,y2).

联立 ,化为:(1+2k2)x2+4kmx+2m2﹣8=0,

△≥0,可得:9k2+4≥m2

x1+x2= ,x1x2=

,∴ =x1x2+y1y2=0.

∴(1+k2)x1x2+mk(x1+x2)+m2=0,

+m2=0,

化为:3m2=8+8k2,与 =r联立,

可得r2= = = <4,

因此假设成立,存在圆心在原点的圆,方程为x2+y2= ,使得该圆的任意一条切线(切线斜率存在)与椭圆C恒有两个交点A,B,且


【解析】(1)由原点、焦点,短轴的端点构成等腰直角三角形,可得b=c.由椭圆C: =1(α>b>0)经过点( ),可得 =1,与a2=b2+c2联立即可得出.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线(切线斜率存在)与椭圆C恒有两个交点A,B.且 .设圆的方程为:x2+y2=r2 , (0<r<2).设圆的切线为y=kx+m,可得 =r,A(x1 , y1),B(x2 , y2).与椭圆方程联立化为:(1+2k2)x2+4kmx+2m2﹣8=0,利用根与系数的关系及其 ,可得 =x1x2+y1y2=0.化简整理即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点左顶点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知是椭圆上的两点是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与年促销费用万元()满足为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将该产品的年利润万元表示为年促销费用万元的函数;

(2)该厂家年促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若如下框图所给的程序运行结果为,那么判断框中应填入的关于的条件是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴的正半轴上,且半径为2的圆被直线截得的弦长为.

1)求圆的方程;

2)设动直线与圆交于两点,则在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆,满足下列条件:圆心位于轴正半轴上,与直线相切且被轴截得的弦长为,圆的面积小于13.

(Ⅰ)求圆的标准方程;

(Ⅱ)设过点的直线与圆交于不同的两点,以为邻边作平行四边形.是否存在这样的直线,使得直线恰好平行?如果存在,求出的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C1的方程为ρsin(θ+ )+2 =0,曲线C2的参数方程为 (θ为参数).
(1)将C1的方程化为直角坐标方程;
(2)若点Q为C2上的动点,P为C1上的动点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某社区居民有无收看“奥运会开幕式”,某记者分别从某社区60~70岁,40~50岁,20~30岁的三个年龄段中的160人,240人,x人中,采用分层抽样的方法共抽查了30人进行调查,若在60~70岁这个年龄段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象经过两点,如图所示,且函数的值域为.过该函数图象上的动点轴的垂线,垂足为,连接.

(I)求函数解析式

的面积为,求的最大值.

查看答案和解析>>

同步练习册答案