精英家教网 > 高中数学 > 题目详情
17.求过直线3x-y+4=0和4x-6y+3=0的交点,且垂直于直线5x+2y+6=0的直线方程.

分析 设垂直于直线5x+2y+6=0的直线方程为:2x-5y+m=0,把直线3x-y+4=0和4x-6y+3=0的交点代入即可得出.

解答 解:设垂直于直线5x+2y+6=0的直线方程为:2x-5y+m=0,
联立$\left\{\begin{array}{l}{3x-y+4=0}\\{4x-6y+3=0}\end{array}\right.$,解得P(-$\frac{3}{2}$,$-\frac{1}{2}$).
把P(-$\frac{3}{2}$,$-\frac{1}{2}$)代入2x-5y+m=0,解得m=$\frac{1}{2}$.
∴要求的直线方程为:4x-10y+1=0.

点评 本题考查了相互垂直的直线斜率之间的关系、直线的交点,考查了几十年令,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图1-41所示的是某几何体的主视图和左视图,则如图1-42所示的五个图形中可能是该几何体的俯视图的是1,2,3,4,5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若A,B∈(0,$\frac{π}{2}$),且A+B>$\frac{π}{2}$,求证:cosA<sinB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.利用余弦曲线,写出满足cosx>0,x∈[0,2π]的x的区间是[0,$\frac{π}{2}$)∪($\frac{3π}{2}$,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若曲线y=2x-alnx(a<2)的-条切线l与直线y=x-5平行,且两直线距离为3$\sqrt{2}$,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知O为坐标原点,椭圆$\frac{x^2}{2}+{y^2}$=1的左、右焦点分别为F1,F2,点P为直线l:x+y=2上且不在x轴上的任意一点.
(Ⅰ)求△F1PF2周长的最小值;
(Ⅱ)设直线PF1和PF2的斜率分别为k1,k2,直线PF1和PF2与椭圆的交点分别为A,B和C,D.
①证明:$\frac{1}{k_1}-\frac{3}{k_2}$=2;
②当直线OA,OB,OC,OD的斜率之和为0时,求直线l上点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,以第 ①个等腰直角三角形的斜边作为第 ②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边作为第 ③个等腰直角三角形的腰,依此类推,若第 ⑨个等腰直角三角形的斜边长为$16\sqrt{3}$厘米,则第 ①个等腰直角三角形的斜边长为$\sqrt{3}$厘米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)=m-$\frac{2}{{{5^x}+1}}$
(1)判断并证明函数f(x)的单调性;
(2)若f(x)是奇函数,求m的值;
(3)若f(x)的值域为D,且D⊆[-3,1],求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设数列{an}的前n项和Sn=n2,则a9的值为(  )
A.15B.17C.49D.64

查看答案和解析>>

同步练习册答案