精英家教网 > 高中数学 > 题目详情
已知关于x的函数f(x)=x2+2(m-1)x+2m+6.
(Ⅰ)当函数图象经过点(0,1)时,求f(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,试证明函数有两个不相等的零点,且分别在区间(0,1)和(6,7)内.
分析:(Ⅰ)由f(0)=1,可建立关于m的方程,解之即可得f(x)的解析式;(Ⅱ)由△>0,可得函数有两个不相等的零点,再由零点的判断定理可得他们分别在区间(0,1)和(6,7)内.
解答:解:(Ⅰ)当函数图象经过点(0,1)时,必有f(0)=2m+6=1,
解得m=-
5
2
,故f(x)的解析式为f(x)=x2-7x+1;
(Ⅱ)由(Ⅰ)可得f(x)=x2-7x+1,
∵△=(-7)2-4=45>0,∴方程x2-7x+1=0有两个不相等的实根,
∴函数f(x)=x2-7x+1有两个不相等的零点,
又因为f(0)=1,f(1)=-5,f(6)=-5,f(7)=1
所以f(0)•f(1)<0,f(,6)•f(7)<0,
由零点的存在性定理可得:函数的零点分别在区间(0,1)和(6,7)内.
点评:本题考查函数零点的判断定理,涉及函数解析式的求解,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=-
1
3
x3+bx2+cx+bc,其导函数为f′(x).令g(x)=|f′(x)|,记函数g(x)在区间[-1、1]上的最大值为M.
(Ⅰ)如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值:
(Ⅱ)若|b|>1,证明对任意的c,都有M>2
(Ⅲ)若M≧K对任意的b、c恒成立,试求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=-
1
3
x3
+bx2+cx+bc,如果函数f(x)在x=1处有极值-
4
3
,试确定b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=x2+2ax+b(其中a,b∈R)
(Ⅰ)求函数|f(x)|的单调区间;
(Ⅱ)令t=a2-b.若存在实数m,使得|f(m)|≤
1
4
与|f(m+1)|≤
1
4
同时成立,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=mx-1,(其中m>1),设a>b>c>1,则
f(a)
a
f(b)
b
f(c)
c
的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的函数f(x)=(-2a+3b-5)x+8a-5b-1.如果x∈[-1,1]时,其图象恒在x轴的上方,则
b
a
的取值范围是
(-∞,
3
2
)∪(3,+∞)
(-∞,
3
2
)∪(3,+∞)

查看答案和解析>>

同步练习册答案