精英家教网 > 高中数学 > 题目详情

若M为椭圆上一点,F1,F2是椭圆的两个焦点,且∠MF1F2=2∠MF2F1=2α(α≠0),则椭圆的离心离是________.

2cosα-1
分析:应用正弦定理找出MF1和 MF2的关系,利用椭圆定义及焦距的长,得到2个等式,把这2个等式相除便可得到离心率的表达式,化简可求离心率.
解答:设MF1=m,MF2=n,由正弦定理得=,∴n=2mcosα.
又由椭圆的定义知,m+2mcosα=2a,再由 mcos2α+2mcosα•cosα=2c 可得,
∴e======2cosα-1,
故答案为 2cosα-1.
点评:本题主要考查椭圆的定义和性质,及三角形中的正弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C:
x2
9
+
y2
5
=1
的左顶点、右焦点分别为A、F,右准线为l,N为l上一点,且在x轴上方,AN与椭圆交于点M.
(1)若AM=MN,求证:AM⊥MF;
(2)设过A,F,N三点的圆与y轴交于P,Q两点,求PQ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,右焦点为F(c,0),P(x0,y0)是椭圆上一点,且x0>0,过P作圆x2+y2=b2的切线,交椭圆于另一点Q,设切点为M,
(1)用x0表示|PM|;
(2)若△PQF的周长为16,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
36
+
y2
20
=1的左顶点,右焦点分别为A,F,右准线为l,N为l上一点,且在x轴上方,AN与椭圆交于点M.
(1)若AM=MN,求证:AM⊥MF;
(2)过A,F,N三点的圆与y轴交于P,Q两点,求PQ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为椭圆
x2
25
+
y2
16
=1
上一点,F为右焦点,若|
PF
|=6
,且点M满足
OM
=
1
2
(
OP
+
OF
)
(其中O为坐标原点),则|
OM
|
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知P为椭圆数学公式上一点,F为右焦点,若数学公式,且点M满足数学公式(其中O为坐标原点),则数学公式的值为


  1. A.
    1
  2. B.
    2
  3. C.
    4
  4. D.
    8

查看答案和解析>>

同步练习册答案