精英家教网 > 高中数学 > 题目详情
10.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中正确是①④.(填序号即可)
①|BM|是定值;
②总有CA1⊥平面A1DE成立;
③存在某个位置,使DE⊥A1C;
④存在某个位置,使MB∥平面A1DE.

分析 对于①:由余弦定理可得MB2=MF2+FB2-2MF•FB•cos∠MFB,可得MB是定值,可得正确;
对于②:由反证法即可证明;
对于③:A1C在平面ABCD中的射影为AC,AC与DE不垂直,可得不正确;
对于④:取CD中点F,连接MF,BF,则平面MBF∥平面A1DE,可得正确;

解答 解:对于①:由∠A1DE=∠MFB,MF=$\frac{1}{2}$A1D=定值,FB=DE=定值,
由余弦定理可得MB2=MF2+FB2-2MF•FB•cos∠MFB,
所以MB是定值,故①正确.
对于②:由反证法,若总有CA1⊥平面A1DE成立,可得:总有CA1⊥平面A1E成立,错误;
对于③:∵A1C在平面ABCD中的射影为AC,AC与DE不垂直,
∴存在某个位置,使DE⊥A1C不正确.可得③不正确.
对于④:取CD中点F,连接MF,BF,则MF∥DA1,BF∥DE,
∴平面MBF∥平面A1DE,
∴MB∥平面A1DE,故④正确.
故答案为:①④.

点评 本题主要考查了线面、面面平行与垂直的判定和性质定理,考查了空间想象能力和推理论证能力,考查了反证法的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-$\frac{1}{2}$|-|2x+1|.
(Ⅰ)求f(x)的值域;
(Ⅱ)若f(x)的最大值时a,已知x,y,z均为正实数,且x+y+z=a,求证:$\frac{{y}^{2}}{x}$+$\frac{{z}^{2}}{y}$+$\frac{{x}^{2}}{z}$≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某地政府落实党中央“精准扶贫”政策,解决一贫困山村的人畜用水困难,拟修建一个底面为正方形(由地形限制边长不超过10m)的无盖长方体蓄水池,设计蓄水量为800m3.已知底面造价为160元/m2,侧面造价为100元/m2
(I)将蓄水池总造价f(x)(单位:元)表示为底面边长x(单位:m)的函数;
(II)运用函数的单调性定义及相关知识,求蓄水池总造价f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点$P({\sqrt{3},-2\sqrt{3}})$且倾斜角为135°的直线方程为(  )
A.y+4$\sqrt{3}$=3xB.y=x-$\sqrt{3}$C.$x+y=\sqrt{3}$D.$x+y+\sqrt{3}=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点.
(I)求中线AM的直线方程;
(II)求AB边上的高所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列结论中正确的是(  )
A.a>b⇒a-c<b-cB.a>b⇒a2>b2C.a>b>0⇒$\frac{1}{a}<\frac{1}{b}$D.a>b⇒ac2>bc2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f'(x)是奇函数f(x)x∈R的导函数,f(-1)=0,当x>0时,xf'(x)-f(x)<0则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=cos$\frac{x+2φ}{3}$(φ∈[-π,0])是奇函数,则下列说法错误的是(  )
A.f(-1-6π)+f(1+12π)=0
B.函数f(x)的一个单调递减区间为[$\frac{17π}{2}$,10π]
C.函数f(x)的一个对称中心为(3π,0)
D.函数g(x)=f(6x)-$\frac{1}{2}$在[0,9]上有4个零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.曲线y=ex在点x=0处的切线的倾斜角为$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案