精英家教网 > 高中数学 > 题目详情
如图甲,△ABC是边长为6的等边三角形,E,D分别为AB、AC靠近B、C的三等分点,点G为BC边的中点.线段AG交线段ED于F点,将△AED沿ED翻折,使平面AED⊥平面BCDE,连接AB、AC、AG形成如图乙所示的几何体。

(1)求证BC⊥平面AFG;
(2)求二面角B-AE-D的余弦值.
(1)详见解析, (2)

试题分析:(1)折叠问题,首先要明确折叠前后量的变化,尤其是垂直条件的变化,本题要证明线面垂直,首先找线线垂直,折叠前后都有条件,而折叠后直线变为两条相交直线,因此可由线面垂直判定定理得到BC⊥平面AFG ,(2)求二面角,有两个方法,一是作出二面角的平面角,二是利用空间向量计算;本题易建立空间直角坐标系,较易表示各点坐标,因此选择利用空间向量求二面角.下面的关键是求出两个平面的法向量,平面ADE的一个法向量易求,而平面ABE的一个法向量则需列方程组求解,最后利用数量积求夹角的余弦值
试题解析:(1) 在图甲中,由△ABC是等边三角形,E,D分别为AB,AC的三等分点,点G为BC边的中点,易知DE⊥AF,DE⊥GF,DE//BC.            2分
在图乙中,因为DE⊥AF,DE⊥GF,AFFG=F,所以DE⊥平面AFG.
又DE//BC,所以BC⊥平面AFG.                    4分
(2) 因为平面AED⊥平面BCDE,平面AED平面BCDE=DE,DE⊥AF,DE⊥GF,所以FA,FD,FG两两垂直.
以点F为坐标原点,分别以FG,FD,FA所在的直线为轴,建立如图所示的空间直角坐标系

,所以0).              6分
设平面ABE的一个法向量为
,即
,则,则.            8分
显然为平面ADE的一个法向量,
所以.                  10分
二面角为钝角,所以二面角的余弦值为.   12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,O是AC的中点,平面.

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图几何体中,四边形为矩形,的中点,为线段上的一点,且.

(1)证明:
(2)证明:面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB.
 
(1)证明:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若平面α,β垂直,则下面可以是这两个平面的法向量的是(  )
A.n1=(1,2,1),n2=(-3,1,1)
B.n1=(1,1,2),n2=(-2,1,1)
C.n1=(1,1,1),n2=(-1,2,1)
D.n1=(1,2,1),n2=(0,-2,-2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设OABC是四面体,G1是△ABC的重心,G是OG1上一点,且OG=3GG1,若=x+y+z,则(x,y,z)为(  )
A.(,,)B.(,,)
C.(,,)D.(,,)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P(1,2,3)关于OZ轴的对称点的坐标为(     )
A.(-1, -2, 3)B.(1, 2, -3)C.(-1, -2, -3)D.(-1, 2, -3)

查看答案和解析>>

同步练习册答案