精英家教网 > 高中数学 > 题目详情
10.数列{an}的前n项和为Sn,且${a_1}=1,{S_{n+1}}=3{S_n}+n+1,n∈{N^*}$.
(Ⅰ)求证:数列$\left\{{{a_n}+\frac{1}{2}}\right\}$是等比数列;
(Ⅱ)若bn=$\frac{n}{{a}_{n+1}-{a}_{n}}$,设数列{bn}的前n项和Tn,n∈N*,证明:Tn<$\frac{3}{4}$.

分析 (Ⅰ)通过Sn+1=3Sn+n+1与Sn=3Sn-1+n(n≥2)作差,进而计算可知an+1=3an+1(n≥2),变形可知an+1+$\frac{1}{2}$=3(an+$\frac{1}{2}$),进而可知数列{an+$\frac{1}{2}$}是等比数列;
(Ⅱ)通过a1=1及(I)可知${b_n}=\frac{n}{{\frac{{{3^{n+1}}-1}}{2}-\frac{{{3^n}-1}}{2}}}=\frac{n}{3^n}$,进而利用错位相减法计算即得结论.

解答 证明:(Ⅰ)∵Sn+1=3Sn+n+1,①
∴Sn=3Sn-1+n(n≥2),②
①-②得:an+1=3an+1(n≥2),
变形得:an+1+$\frac{1}{2}$=3(an+$\frac{1}{2}$),即$\frac{{{a_{n+1}}+\frac{1}{2}}}{{{a_n}+\frac{1}{2}}}=3(n≥2)$,
又∵$\frac{{{a_2}+\frac{1}{2}}}{{{a_1}+\frac{1}{2}}}=3$满足上式,
∴数列{an+$\frac{1}{2}$}是等比数列;
(Ⅱ)由a1=1,得an=$\frac{{{3^n}-1}}{2}$,n∈N*
则${b_n}=\frac{n}{{\frac{{{3^{n+1}}-1}}{2}-\frac{{{3^n}-1}}{2}}}=\frac{n}{3^n}$,
又∵${T_n}=\frac{1}{3}+\frac{2}{3^2}+…+\frac{n}{3^n}$,①
∴$\frac{1}{3}{T_n}=\frac{1}{3^2}+\frac{2}{3^3}+…+\frac{n}{{{3^{n+1}}}}$,②
①-②得:$\frac{2}{3}{T_n}=\frac{1}{3}+\frac{1}{3^2}+…+\frac{1}{3^n}-\frac{n}{{{3^{n+1}}}}$,
∴$\frac{2}{3}{T_n}=\frac{{\frac{1}{3}(1-\frac{1}{3^n})}}{{1-\frac{1}{3}}}-\frac{n}{{{3^{n+1}}}}$,
∴${T_n}=\frac{3}{4}-\frac{3+2n}{{4•{3^n}}}$,即${T_n}<\frac{3}{4}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知直线y=kx+b与椭圆$\frac{{x}^{2}}{4}$+y2=1交于A,B两点,记△AOB的面积为S(O是坐标原点)
(1)求椭圆的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(3)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列说法中错误的序号是④.
①若函数f(x)=ax2+(2a+b)x+2,x∈[2a-1,a+4]是偶函数,则b=2;
②函数f(x)=$\sqrt{{x^2}-2015}-\sqrt{2015-{x^2}}$既是奇函数又是偶函数;
③已知f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);
④已知f(x)是R上的奇函数,且当x∈(0,+∞)时f(x)单调递增,则f(x)在R上为增函数;
⑤已知f(x)是定义在R上不恒为零的函数,且对?x,y∈R都满足f(x•y)=xf(y)+yf(x),则f(x)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图E,F在边长分别为2和1的矩形边DC与BC上,若$\overrightarrow{AE}•\overrightarrow{AF}$=6,则$\overrightarrow{BE}•(\overrightarrow{DF}+\overrightarrow{AF})$等于(  )
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若函数f(x)=$\left\{\begin{array}{l}(3a-1)x+4a,\;(x<1)\\ \frac{a}{x},\;x≥1\end{array}$是(-∞,+∞)上的减函数,则a的取值范围是(  )
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$\frac{1}{6}≤a<\frac{1}{3}$D.$0<a<\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=ax3-3x2+4,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围为a<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合A={1,2},且A∪B={1,2,3},写出B的一个集合:{3}(或{1,3},{2,3},{1,2,3}),,所有可能的集合B共有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数$f(x)=\frac{{|{2-x}|}}{{\sqrt{x+2}}}-{(x-\frac{3}{2})^0}$的定义域是(  )
A.$(-2,\frac{3}{2})∪(\frac{3}{2},+∞)$B.$(-2,\frac{3}{2})$C.$(\frac{3}{2},+∞)$D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,其中c=3,$a=3\sqrt{2}$,$cosB=\frac{{\sqrt{2}}}{4}$,则sinA=(  )
A.$\frac{7}{24}$B.$\frac{{3\sqrt{7}}}{8}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{{\sqrt{14}}}{4}$

查看答案和解析>>

同步练习册答案