精英家教网 > 高中数学 > 题目详情

如图,已知平面,四边形是矩形,,点分别是的中点.

(Ⅰ)求三棱锥的体积;
(Ⅱ)求证:平面
(Ⅲ)若点为线段中点,求证:∥平面

(Ⅰ);(Ⅱ)详见解析;(Ⅲ)详见解析

解析试题分析:(Ⅰ)因为平面,所以为三棱锥的高。因为是矩形,所以可求底面的面积,根据锥体体积公式可求此三棱锥的体积。(Ⅱ)根据平面,四边形是矩形,可证得平面,从而可得,再根据等腰三角形中线即为高线可得,根据线面垂直的判定定理可得平面。(Ⅲ)连结,可证得中点,由中位线可证得,再由线面平行的判定定理可证得∥平面
试题解析:(Ⅰ)解:因为平面
所以为三棱锥的高.                       2分

所以.                        4分
(Ⅱ)证明:因为平面平面,所以
因为 所以平面
因为平面, 所以.                         6分
因为,点的中点,所以,又因为
所以平面.                                    8分
(Ⅲ)证明:连结,连结

因为四边形是矩形,所以,且
分别为的中点, 所以四边形是平行四边形,
所以的中点,又因为的中点,
所以, &nb

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.记CD=x,V(x)表示四棱锥F-ABCD的体积.

(1)求V(x)的表达式.
(2)求V(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD是边长为2的正方形,直线l与平面ABCD平行,EFl上的两个不同点,且EAEDFBFC.E′和F′是平面ABCD内的两点,EE′和FF′都与平面ABCD垂直.

(1)证明:直线EF′垂直且平分线段AD
(2)若∠EAD=∠EAB=60 °,EF=2.求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直三棱柱中,,D为BC的中点.

(1)求证:∥面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,为线段的中点,.

(Ⅰ)证明:⊥平面
(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱锥的底面边长为,侧棱长为为棱的中点.

(1)求异面直线所成角的大小(结果用反三角函数值表示);
(2)求该三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图在长方体中,,点的中点,点的中点.

(1)求长方体的体积;
(2)若,求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.

(1)求异面直线所成角的余弦值;
(2)求二面角的正弦值;
(3)求此几何体的体积的大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四面体中,,点分别是的中点.

(1)EF∥平面ACD;
(2)求证:平面⊥平面
(3)若平面⊥平面,且,求三棱锥的体积.

查看答案和解析>>

同步练习册答案