精英家教网 > 高中数学 > 题目详情

已知正实数数列中,,则等于(    )

A.16   B.8   C.   D.4

 

【答案】

D.

【解析】

试题分析:由得数列是一个等差数列.又有可得.所以数列的公差是3.所以=16. .所以.故选D.本题关键是转化为另一个等差数列.

考点:1.等差数列的定义.2.等差中项的知识点.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知下列命题:(1)已知函数f(x)=x+
p
x-1
(p为常数且p>0),若f(x)在区间(1,+∞)的最小值为4,则实数p的值为
9
4
; (2)?x∈[0,
π
2
],sinx+cosx>
2
;(3)正项等比数列{an}中:a4.a6=8,函数f(x)=x(x+a3)(x+a5)(x+a7),则f(0)=16
2
;(4)若数列{an}的前n项和为Sn=2n2-n+1,且bn=2an+1,则数列{bn}前n项和为Tn=4n2-n+2上述命题正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(理)在平面直角坐标系xoy中,若在曲线C1的方程F(x,y)=0中,以(λx,λy)(λ为正实数)代替(x,y)得到曲线C2的方程F(λx,λy)=0,则称曲线C1、C2关于原点“伸缩”,变换(x,y)→(λx,λy)称为“伸缩变换”,λ称为伸缩比.
(1)已知曲线C1的方程为
x2
9
-
y2
4
=1
,伸缩比λ=2,求C1关于原点“伸缩变换”后所得曲线C2的方程;
(2)射线l的方程y=
2
2
x(x≥0)
,如果椭圆C1
x2
16
+
y2
4
=1
经“伸缩变换”后得到椭圆C2,若射线l与椭圆C1、C2分别交于两点A、B,且|AB|=
2
,求椭圆C2的方程;
(3)对抛物线C1:y2=2p1x,作变换(x,y)→(λ1x,λ1y),得抛物线C2:y2=2p2x;对C2作变换(x,y)→(λ2x,λ2y)得抛物线C3:y2=2p3x,如此进行下去,对抛物线Cn:y2=2pnx作变换(x,y)→(λnx,λny),得抛物线Cn+1:y2=2pn+1x,….若p1=1 , λn=(
1
2
)n
,求数列{pn}的通项公式pn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•静安区一模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
12
)x
的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理)设{an}的公差d(d>0)为已知常数,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?并请说明理由.
(4)(文)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省威海市高三3月模拟考试理科数学试卷(解析版) 题型:解答题

已知正项数列,其前项和满足的等比中项.

(1)求数列的通项公式;

(2) 符号表示不超过实数的最大整数,记,求.

 

查看答案和解析>>

同步练习册答案