【题目】已知抛物线L:()的焦点为F,过点的动直线l与抛物线L交于A,B两点,直线交抛物线L于另一点C,直线的最小值为4.
(1)求椭圆C的方程;
(2)若过点A作y轴的垂线m,则x轴上是否存在一点,使得直线PB与直线m的交点恒在一条定直线上?若存在,求该点的坐标及该定直线的方程;若不存在,请说明理由.
【答案】(1);(2)存在,,.
【解析】
(1)显然当轴时,取得最小值,可得,即可得到所求抛物线方程;
(2)假设轴上存在一点,,使得直线与直线的交点恒在一条定直线上.设,,,,直线的方程为,联立抛物线方程,运用韦达定理,由的方程和直线的方程,联立求得交点,化简可得所求定点和定直线.
(1)设直线的倾斜角为,
所以由抛物线()的焦点弦公式得,
所以当,即当轴时,取得最小值.
把代入可得,
故,,
可得抛物线的方程为:.
(2)假设轴上存在一点,,使得直线与直线的交点恒在一条定直线上.
设,,,,直线的方程为,
联立抛物线方程,可得,
,,
直线的方程为即,
联立直线,
可得,
由,,可得,,
即有,
由假设可得,
即,此时,
可得存在定点,定直线为.
科目:高中数学 来源: 题型:
【题目】设关于的一元二次方程.
(1)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有两个不等实根的概率.
(2)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】西安市自2017年5月启动对“车不让人行为”处罚以来,斑马线前机动车抢行不文明行为得以根本改变,斑马线前礼让行人也成为了一张新的西安“名片”.
但作为交通重要参与者的行人,闯红灯通行却频有发生,带来了较大的交通安全隐患及机动车通畅率降低,交警部门在某十字路口根据以往的检测数据,得到行人闯红灯的概率约为0.4,并从穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯情况得到列联表如下:
30岁以下 | 30岁以上 | 合计 | |
闯红灯 | 60 | ||
未闯红灯 | 80 | ||
合计 | 200 |
近期,为了整顿“行人闯红灯”这一不文明及项违法行为,交警部门在该十字路口试行了对闯红灯行人进行经济处罚,并从试行经济处罚后穿越该路口行人中随机抽取了200人进行调查,得到下表:
处罚金额(单位:元) | 5 | 10 | 15 | 20 |
闯红灯的人数 | 50 | 40 | 20 | 0 |
将统计数据所得频率代替概率,完成下列问题.
(Ⅰ)将列联表填写完整(不需写出填写过程),并根据表中数据分析,在未试行对闯红灯行人进行经济处罚前,是否有99.9%的把握认为闯红灯与年龄有关;
(Ⅱ)当处罚金额为10元时,行人闯红灯的概率会比不进行处罚降低多少;
(Ⅲ)结合调查结果,谈谈如何治理行人闯红灯现象.
参考公式: ,其中
参考数据:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.132 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接2022年冬奥会,某市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记表示学生的考核成绩,并规定为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如图所示的茎叶图:
(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核为优秀的概率;
(2)从图中考核成绩满足的学生中任取3人,设表示这3人中成绩满足的人数,求的分布列和数学期望;
(3)根据以往培训数据,规定当时培训有效.请你根据图中数据,判断此次冰雪培训活动是否有效,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C: (a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,⊙N的半径为|NO|. 设D为AB的中点,DE,DF与⊙N分别相切于点E,F,求EDF的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在圆心角为直角,半径为的扇形区域内进行野外生存训练.如图所示,在相距的,两个位置分别为300,100名学生,在道路上设置集合地点,要求所有学生沿最短路径到点集合,记所有学生进行的总路程为.
(1)设,写出关于的函数表达式;
(2)当最小时,集合地点离点多远?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com