10£®¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©£¬Èç¹û¶ÔÈÎÒâx¡Ê£¨0£¬+¡Þ£©£¬ºãÓÐf£¨kx£©=kf£¨x£©£¬£¨k¡Ý2£¬k¡ÊN+£©³ÉÁ¢£¬Ôò³Æf£¨x£©Îªk½×Ëõ·Åº¯Êý£®
£¨1£©ÒÑÖªº¯Êýf£¨x£©Îª¶þ½×Ëõ·Åº¯Êý£¬ÇÒµ±x¡Ê£¨1£¬2]ʱ£¬f£¨x£©=1+log${\;}_{\frac{1}{2}}$x£¬Çóf£¨2$\sqrt{2}$£©µÄÖµ£»
£¨2£©ÒÑÖªº¯Êýf£¨x£©Îª¶þ½×Ëõ·Åº¯Êý£¬ÇÒµ±x¡Ê£¨1£¬2]ʱ£¬f£¨x£©=$\sqrt{2x-{x}^{2}}$£¬ÇóÖ¤£ºº¯Êýy=f£¨x£©-xÔÚ£¨1£¬+¡Þ£©ÉÏÎÞÁãµã£»
£¨3£©ÒÑÖªº¯Êýf£¨x£©Îªk½×Ëõ·Åº¯Êý£¬ÇÒµ±x¡Ê£¨1£¬k]ʱ£¬f£¨x£©µÄÈ¡Öµ·¶Î§ÊÇ[0£¬1£©£¬Çóf£¨x£©ÔÚ£¨0£¬kn+1]£¨n¡ÊN£©ÉϵÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©¸ù¾Ý¶þ½×Ëõ·Åº¯ÊýµÄ¶¨Ò壬ֱ½Ó´úÈë½øÐÐÇóÖµ¼´¿É£»
£¨2£©¸ù¾Ýº¯ÊýÁãµãµÄ¶¨ÒåºÍÐÔÖÊÅжϺ¯Êýy=f£¨x£©-xÔÚ£¨1£¬+¡Þ£©ÉÏÎÞÁãµã£»
£¨3£©¸ù¾Ýk½×Ëõ·Åº¯Êý³ÉÁ¢µÄÌõ¼þ½¨Á¢Ìõ¼þ¹Øϵ¼´¿ÉÇó³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉ$\sqrt{2}$¡Ê£¨1£¬2]µÃ£¬f£¨$\sqrt{2}$£©=1+1+log${\;}_{\frac{1}{2}}$$\sqrt{2}$=$\frac{1}{2}$¡­£¨2·Ö£©
ÓÉÌâÖÐÌõ¼þµÃf£¨2$\sqrt{2}$£©=2f£¨$\sqrt{2}$£©=2¡Á$\frac{1}{2}$=1¡­£¨4·Ö£©
£¨2£©µ±x¡Ê£¨2i£¬2i+1]£¨i=0£¬1£¬2£©Ê±£¬$\frac{x}{{2}^{i}}$¡Ê£¨1£¬2]£¬ÒÀÌâÒâ¿ÉµÃ£ºf£¨x£©=2f£¨$\frac{x}{2}$£©=22f£¨$\frac{x}{{2}^{2}}$£©=¡­=2if£¨$\frac{x}{{2}^{i}}$£©=2i$\sqrt{2•\frac{x}{{2}^{i}}-£¨\frac{x}{{2}^{i}}£©^{2}}$=$\sqrt{{2}^{i+1}x-{x}^{2}}$£®¡­£¨6·Ö£©
·½³Ìf£¨x£©-x=0?$\sqrt{{2}^{i+1}x-{x}^{2}}$=x?x=0»òx=2i£¬0Óë2i¾ù²»ÊôÓÚ£¨2i£¬2i+1]£¨£¨i=0£¬1£¬2£©£©¡­£¨8·Ö£©
µ±x¡Ê£¨2i£¬2i+1]£¨£¨i=0£¬1£¬2£©£©Ê±£¬·½³Ìf£¨x£©-x=0ÎÞʵÊý½â£®
×¢Òâµ½£¨1£¬+¡Þ£©=£¨20£¬21]¡È£¨21£¬22]¡È£¨22£¬23£©¡È¡­£¬ËùÒÔº¯Êýy=f£¨x£©-xÔÚ£¨1£¬+¡Þ£©ÉÏÎÞÁãµã£®¡­£¨10·Ö£©
£¨3£©µ±x¡Ê£¨kj£¬kj+1]£¬j¡ÊZʱ£¬ÓÐ$\frac{x}{{k}^{j}}$¡Ê£¨1£¬k]£¬ÒÀÌâÒâ¿ÉµÃ£ºf£¨x£©=kf£¨$\frac{x}{k}$£©=k2f£¨$\frac{x}{{k}^{2}}$£©=¡­=kjf£¨$\frac{x}{{k}^{j}}$£©
µ±x¡Ê£¨1£¬k]ʱ£¬f£¨x£©µÄÈ¡Öµ·¶Î§ÊÇ[0£¬1£©¡­£¨12·Ö£©
ËùÒÔµ±x¡Ê£¨kj£¬kj+1]£¬j¡ÊZʱ£¬f£¨x£©µÄÈ¡Öµ·¶Î§ÊÇ[0£¬kj£©£®¡­£¨14·Ö£©
ÓÉÓÚ£¨0£¬kn+1]=£¨kn£¬kn+1]¡È£¨kn-1£¬kn]¡È¡­¡È£¨k0£¬k]¡È£¨k-1£¬k0]¡È¡­£¨16·Ö£©
ËùÒÔº¯Êýf£¨x£©ÔÚ£¨0£¬kn+1]£¨n¡ÊN£©ÉϵÄÈ¡Öµ·¶Î§ÊÇ£º[0£¬kn£©¡È[0£¬kn-1£©¡È¡­¡È[0£¬k0£©¡È[0£¬k-1£©¡È¡­=[0£¬kn£©£®¡­£¨18·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éж¨ÒåµÄÓ¦Óã¬ÕýÈ·Àí½âk½×Ëõ·Åº¯ÊýµÄ¶¨ÒåÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©Âú×㣺¶ÔÈÎÒâµÄm£¬n¡ÊRÓÐf£¨m+n£©=f£¨m£©•f£¨n£©£¬ÇÒµ±x£¾0ʱ£¬ÓÐ0£¼f£¨x£©£¼1£¬f£¨4£©=$\frac{1}{16}$
£¨1£©Ö¤Ã÷£ºf£¨x£©£¾0ÔÚRÉϺã³ÉÁ¢£»
£¨2£©Ö¤Ã÷£ºf£¨x£©ÔÚRÉÏÊǼõº¯Êý£»
£¨3£©Èôx£¾0ʱ£¬²»µÈʽ4f£¨x£©f£¨ax£©£¾f£¨x2£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÓйØÏÂÁÐÃüÌâµÄ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÃüÌâ¡°Èôx2=1£¬Ôòx=1¡±µÄ·ñÃüÌâΪ£ºÈô¡°x2=1Ôòx¡Ù1¡±
B£®¡°x=-1¡±ÊÇ¡°x2-5x-6=0¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ
C£®ÃüÌâ¡°?x¡ÊR£¬Ê¹µÃx2+x+1£¼0¡±µÄ·ñ¶¨ÊÇ£º¡°?x¡ÊR£¬¾ùÓÐx2+x+1£¼0¡±
D£®ÃüÌâ¡°Èôsinx¡Ùsiny£¬Ôòx¡Ùy¡±ÎªÕæÃüÌâ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬ADΪÄÚ½Çƽ·ÖÏߣ¬¡ÏADC=60¡ã£¬µãEÔÚADÉÏ£¬Âú×ãDE=DB£¬ÉäÏßCE½»ABÓÚµãF£¬ÇóÖ¤£ºAF•AB+CD•CB=AC2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªP1£¨1£¬a1£©¡¢P2£¨2£¬a2£©¡­Pn£¨n£¬an£©¡¢¡­ÊÇÖ±ÏßÉϵÄÒ»Áе㣬ÇÒa1=-2£¬a2=-1.2£¬ÔòÕâ¸öÊýÁÐ{an}µÄͨÏʽÊÇan=0.8n-2.8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÌÖÂÛº¯Êýy=£¨ax-1£©£¨x-2£©£¨a¡ÊR£©µÄÁãµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÈôA={a£¬b£¬c}£¬Ôò¼¯ºÏAµÄ×Ó¼¯¸öÊýÊÇ£¨¡¡¡¡£©
A£®3B£®4C£®7D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÉèABCDΪxOyƽÃæµÄÒ»¸öÕý·½ÐΣ¬Æ䶥µãÊÇA£¨0£¬0£©£¬B£¨1£¬0£©£¬C£¨1£¬1£©£¬D£¨0£¬1£©£¬u=2xy£¬v=x2-y2ÊÇxOyƽÃæµ½uOvƽÃæµÄ±ä»»£¬ÔòÕý·½ÐÎABCDµÄÏñ£¨u£¬v£©µã¼¯ÊÇ£¨¡¡¡¡£©
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑ֪ƽÃæÖ±½Ç×ø±êϵxOyÉϵÄÇøÓòDÓɲ»µÈʽ×é$\left\{\begin{array}{l}{x-y¡Ý0}\\{x+y-3¡Ý0}\\{x¡Ü3}\end{array}\right.$¸ø¶¨£®ÈôP£¨x£¬y£©ÎªDÉ϶¯µã£¬µãAµÄ×ø±êΪ£¨1£¬3£©£¬Ôòz=$\overrightarrow{OP}$•$\overrightarrow{OA}$µÄ×î´óÖµÊÇ12£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸