【题目】四棱锥中,底面为直角梯形,,,,,,且平面平面.
(1)求证:;
(2)在线段上是否存在一点,使二面角的大小为,若存在,求出的值;若不存在,请说明理由.
【答案】(1)证明见解析;(2) 存在,.
【解析】
试题分析:(1)借助题设条件运用线面垂直的性质定理推证;(2)依据题设建立空间直角坐标系,运用空间向量的数量积公式探求.
试题解析:
证明:(1)过作,交于,连接.
,,,四边形是矩形,.,
,,.…………2分
,.又平面,平面,,
平面,……3分
平面,.………………………5分
(2)平面平面,平面平面,,
平面.
以为原点,以,,为坐标轴建立空间直角坐标系,…………………7分
如图所示:则,,假设存在点使得二面角的大小为,则,.
设平面的法向量为,则.
,令得.………9分
平面,
为平面的一个法向量.…………………10分
.……………………11分
解得..…………………12分
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
(1)当a≥1时,求f(x)在[0,e](e为自然对数的底数)上的最大值;
(2)对任意的正实数a,问:曲线y=f(x)上是否存在两点P,Q,使得△POQ(O为坐标原点)是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产一种机器的固定成本(即固定投入)为 0.5 万元,但每生产100台时,又需可变成本(即另增加投入)0.25 万元.市场对此商品的年需求量为 500台,销售的收入(单位:万元)函数为 R(x)=5x-x2(0≤x≤5),其中 x 是产品生产的数量(单位:百台).
(1)求利润关于产量的函数.
(2)年产量是多少时,企业所得的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,焦距为2,离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点作圆的切线,切点分别为,直线与轴交于点,过点的直线交椭圆于两点,点关于轴的对称点为,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是满足下列性质的所有函数组成的集合:对任何(其中为函数的定义域),均有成立.
(1)已知函数,,判断与集合的关系,并说明理由;
(2)是否存在实数,使得,属于集合?若存在,求的取值范围,若不存在,请说明理由;
(3)对于实数、 ,用表示集合中定义域为区间的函数的集合.
定义:已知是定义在上的函数,如果存在常数,对区间的任意划分:,和式恒成立,则称为上的“绝对差有界函数”,其中常数称为的“绝对差上界”,的最小值称为的“绝对差上确界”,符号;求证:集合中的函数是“绝对差有界函数”,并求的“绝对差上确界”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com