精英家教网 > 高中数学 > 题目详情

【题目】四棱锥中,底面为直角梯形,,且平面平面

(1)求证:

(2)在线段上是否存在一点,使二面角的大小为,若存在,求出的值;若不存在,请说明理由.

【答案】(1)证明见解析;(2) 存在,.

【解析】

试题分析:(1)借助题设条件运用线面垂直的性质定理推证;(2)依据题设建立空间直角坐标系,运用空间向量的数量积公式探求.

试题解析:

证明:(1)过,交,连接

四边形是矩形,

…………2分

.又平面平面

平面……3分

平面………………………5分

(2)平面平面,平面平面

平面

为原点,以为坐标轴建立空间直角坐标系,…………………7分

如图所示:则,假设存在点使得二面角的大小为,则

设平面的法向量为,则

,令………9分

平面

为平面的一个法向量.…………………10分

……………………11分

解得…………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)当a≥1时,求f(x)在[0,e](e为自然对数的底数)上的最大值;
(2)对任意的正实数a,问:曲线y=f(x)上是否存在两点P,Q,使得△POQ(O为坐标原点)是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数满足,时总有 ,若,则实数的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 分别是椭圆的左、右焦点,焦距为,动弦平行于轴,且.

(1)求椭圆的方程;

(2)过分别作直线交椭圆于,且,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产一种机器的固定成本(即固定投入)为 0.5 万元,但每生产100台时,又需可变成本(即另增加投入)0.25 万元.市场对此商品的年需求量为 500台,销售的收入(单位:万元)函数为 R(x)=5x-x2(0≤x≤5),其中 x 是产品生产的数量(单位:百台).

(1)求利润关于产量的函数.

(2)年产量是多少时,企业所得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆焦距为2,离心率.

求椭圆的标准方程

过点作圆的切线切点分别为直线轴交于点过点的直线交椭圆两点关于轴的对称点为的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

求曲线在点处的切线与坐标轴围成的三角形的面积

在区间上恒成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是满足下列性质的所有函数组成的集合:对任何其中为函数的定义域),均有成立.

(1)已知函数判断与集合的关系,并说明理由;

(2)是否存在实数,使得属于集合?若存在,求的取值范围,若不存在,请说明理由;

(3)对于实数 表示集合中定义域为区间的函数的集合.

定义:已知是定义在上的函数,如果存在常数对区间的任意划分:和式恒成立,则称上的“绝对差有界函数”,其中常数称为的“绝对差上界”,的最小值称为的“绝对差上确界”,符号求证:集合中的函数是“绝对差有界函数”,并求的“绝对差上确界”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上有两个零点,求的取值范围;

(2)设,当时, ,求的取值范围.

查看答案和解析>>

同步练习册答案