精英家教网 > 高中数学 > 题目详情

【题目】广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2018年某校社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:后得到如图所示的频率分布直方图.

1)根据广场舞者年龄的频率分布直方图,估计广场舞者的平均年龄;

2)若从年龄在内的广场舞者中任取2名,求选中的两人中恰有一人年龄在内的概率.

【答案】154岁;(2.

【解析】

1)根据频率分布直方图提供的数据,代入平均数公式求解.

2)这是一个古典概型,由直方图可知,年龄在内的有2人,在内的有4人,列出从从这6人中任选两人所有可能基本事件的个数,再找出选中的两人中恰有一人年龄在内的基本事件的个数,代入公式求解.

1)广场舞者的平均年龄为:

所以广场舞者的平均年龄大约为54岁;

2)记事件从年龄在内的广场舞者中任取2名,选中的两人中恰有一人年龄在”.

由直方图可知,年龄在内的有2人,分别记为,在内的有4人,分别记为

现从这6人中任选两人,所有可能基本事件有:

,共15个,

事件包含的基本事件有8个,

所以

故从年龄在内的广场舞者中任取2名,选中的两人中恰有一人年龄在内的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,椭圆C的离心率是,抛物线E的焦点FC的一个顶点.

)求椭圆C的方程;

)设PE上的动点,且位于第一象限,E在点P处的切线C交与不同的两点AB,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.

)求证:点M在定直线上;

)直线y轴交于点G,记的面积为的面积为,求的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南北朝时代的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:幂势既同,则积不容异”. 其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面α所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为V1,V2,被平行于这两个平面的任意平面截得的两个截面面积分别为S1,S2,则(

A.如果S1,S2总相等,则V1=V2

B.如果S1=S2总相等,则V1V2不一定相等

C.如果V1=V2 ,则S1,S2总相等

D.存在这样一个平面α使S1=S2相等,则V1=V2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)某研究小组在电脑上进行人工降雨模拟实验,准备用ABC三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验数据统计如下:

方式

实施地点

大雨

中雨

小雨

模拟实验总次数

A

4

6

2

12

B

3

6

3

12

C

2

2

8

12

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:

(1)求甲、乙、丙三地都恰为中雨的概率;

(2)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只要是小雨或中雨即达到理想状态,记甲、乙、丙三地中达到理想状态的个数为随机变量ξ,求随机变量ξ的分布列和均值E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上任意一点,ANPM,垂足为N , AEPB,垂足为E .

1)求证:平面PAM⊥平面PBM.

2)求证:是二面角A-PB-M的平面角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜过去50周的资料显示,该地周光照量(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量(百斤)与使用某种液体肥料(千克)之间对应数据为如图所示的折线图

(1)依据数据的折线图,是否可用线性回归模型拟合的关系?请计算相关系数并加以说明(精确到0.01).(,则线性相关程度很高,可用线性回归模型拟合)

(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量限制,并有如下关系:

周光照量(单位:小时)

光照控制仪最多可运行台数

3

2

1

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.

附:相关系数公式,参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资公司计划投资AB两种金融产品,根据市场调查与预测,A产品的利润与投资金额x的函数关系为B产品的利润与投资金额x的函数关系为.(利润与投资金额单位:万元)

1)该公司已有100万元资金,并全部投入AB两种产品中,其中x万元资金投入A产品,试把AB两种产品利润总和表示为x的函数,并写出x的取值范围.

2)怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图在三棱锥中, 分别为棱的中点,已知

求证(1)直线平面

(2)平面 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出定义:若(其中m为整数),则m叫做与实数x亲密的整数记作{x}m,在此基础上给出下列关于函数的四个说法:

①函数是增函数;

②函数的图象关于直线对称;

③函数上单调递增

④当时,函数有两个零点,

其中说法正确的序号是(

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

同步练习册答案