精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数单调递增,,若对任意,存在,使得成立,则称上的“追逐函数”.若,则下列四个命题:①上的“追逐函数”;②若上的“追逐函数”,则;③上的“追逐函数”;④当时,存在,使得上的“追逐函数”.其中正确命题的个数为( )

A. ①③B. ②④C. ①④D. ②③

【答案】B

【解析】

由题意,分析每一个选项,首先判断单调性,以及,再假设是

“追逐函数”,利用题目已知的性质,看是否满足,然后确定答案.

对于①,可得是递增函数,,若上的“追逐函数”;则存在,使得成立,即 ,此时当k=100时,不存在,故①错误;

对于②,若上的“追逐函数”,此时,解得

,当时,是递增函数,若是“追逐函数”

,即

设函数

,则存在,所以②正确;

对于③是递增函数,,若上的“追逐函数”;则存在,使得成立,即 ,当k=4时,就不存在,故③错误;

对于④,当t=m=1时,就成立,验证如下:

是递增函数,,若上的“追逐函数”;则存在,使得成立,

此时

,故存在存在,所以④正确;

故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正三棱锥中,的中点,且,底面边长,则正三棱锥的外接球的表面积为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,满足Sn=2an-1nN*),数列{bn}满足nbn+1-n+1bn=nn+1)(nN*),且b1=1

1)证明数列{}为等差数列,并求数列{an}{bn}的通项公式;

2)若cn=-1n-1,求数列{cn}的前n项和T2n

3)若dn=an,数列{dn}的前n项和为Dn,对任意的nN*,都有DnnSn-a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种设备随着使用年限的增加,每年的维护费相应增加.现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如表:

年份(年)

维护费(万元)

(I)从这年中随机抽取两年,求平均每台设备每年的维护费用至少有年多于万元的概率;

(II)求关于的线性回归方程;若该设备的价格是每台万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?并说明理由.

参考公式:用最小二乘法求线性回归方程的系数公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论

ACBD

ACD是等边三角形;

AB与平面BCD成60°的角;

AB与CD所成的角是60°.

其中正确结论的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若处取得极值,求过点且与处的切线平行的直线方程;

(II)当函数有两个极值点,且时,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线的右支上一点,分别为双曲线的左右焦点,的内切圆的圆心横坐标为( )

A. B. 2C. D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其导函数的最大值为.

(1)求实数的值;

(2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为2的双曲线的一个焦点到一条渐近线的距离为.

(1)求双曲线的方程;

(2)设分别为的左右顶点,异于一点,直线分别交轴于两点,求证:以线段为直径的圆经过两个定点.

查看答案和解析>>

同步练习册答案