精英家教网 > 高中数学 > 题目详情

【题目】执行如图所示的程序框图,若输入的k,b,r的值分别为2,2,4,则输出i的值是(
A.4
B.3
C.6
D.7

【答案】B
【解析】解:模拟程序的运行,可得:

k=2,b=2,r=4,i=0,x=﹣4

x=﹣3,y=﹣4

不满足条件x2+y2<r2,不满足条件x≥r,x=﹣2,y=﹣2

满足条件x2+y2<r2,i=1,不满足条件x≥r,x=﹣1,y=0

满足条件x2+y2<r2,i=2,不满足条件x≥r,x=0,y=2

满足条件x2+y2<r2,i=3,不满足条件x≥r,x=1,y=4

不满足条件x2+y2<r2,不满足条件x≥r,x=2,y=6

不满足条件x2+y2<r2,不满足条件x≥r,x=3,y=8

不满足条件x2+y2<r2,不满足条件x≥r,x=4,y=10

不满足条件x2+y2<r2,满足条件x≥r,退出循环,输出i的值为3.

故选:B.

【考点精析】通过灵活运用程序框图,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xoy中,曲线C的参数方程为 (t为参数,a>0)以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,已知直线l的极坐标方程为 . (Ⅰ)设P是曲线C上的一个动点,当a=2时,求点P到直线l的距离的最小值;
(Ⅱ)若曲线C上的所有点均在直线l的右下方,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=cos2x的图象,只要把函数 的图象上所有的点(
A.向右平行移动 个单位长度
B.向左平行移动 个单位长度
C.向右平行移动 个单位长度
D.向左平行移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣3)ex+ax,a∈R. (Ⅰ)当a=1时,求曲线f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a∈[0,e)时,设函数f(x)在(1,+∞)上的最小值为g(a),求函数g(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】城市发展面临生活垃圾产生量逐年剧增的困扰,为了建设宜居城市,2017年1月,某市制定《生活垃圾分类和减量工作方案》,到2020年,生活垃圾无害化处理率达到100%.如图是该市2011~2016年生活垃圾年产生量(单位:万吨)的柱状图;如表是2016年年初与年末对该市四个社区各随机抽取1000人调查参与垃圾分类人数的统计表:

2016年初

2016年末

社区A

539

568

社区B

543

585

社区C

568

600

社区D

496

513

注1:年份代码1~6分别对应年份2011~2016
注2:参与度= ×100%
参与度的年增加值=年末参与度﹣年初参与度
(1)由图可看出,该市年垃圾生产量y与年份代码t之间具有较强的线性相关关系,运用最小二乘法可得回归直线方程为 =14.8t+ ,预测2020年该年生活垃圾的产生量;
(2)已知2016年该市生活在垃圾无害化化年处理量为120万吨,且全市参与度每提高一个百分点,都可使该市的生活垃圾无害化处理量增加6万吨,用样本估计总体的思想解决以下问题: ①由表的数据估计2016年该市参与度的年增加值,假设2017年该市参与度的年增加值与2016年大致相同,预测2017年全市生活垃圾无害化处理量;
②在2017年的基础上,若2018年至2020年的参与度逐年增加5个百分点,则到2020年该市能否实现生活垃圾无害化处理率达到100%的目标?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价xi(单位:元/件,整数)和销量yi(单位:件)(i=1,2,…,8)如下表所示:

售价x

33

35

37

39

41

43

45

47

销量y

840

800

740

695

640

580

525

460

①请根据下列数据计算相应的相关指数R2 , 并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价x定为多少时?利润z可以达到最大.

49428.74

11512.43

175.26

124650

(附:相关指数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代算书《孙子算经》上有个有趣的问题“出门望九堤”:今有出门重九堤,堤有九木,木有九枝,枝有九巢,巢有九禽,禽有九雏,雏有九毛,毛有九色,问各几何?现在我们用右图所示的程序框图来解决这个问题,如果要使输出的结果为禽的数目,则在该框图中的判断框中应该填入的条件是(
A.S>10000?
B.S<10000?
C.n≥5
D.n≤6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线C的顶点是原点,以x轴为对称轴,且经过点P(1,2). (Ⅰ)求抛物线C的方程;
(Ⅱ)设点A,B在抛物线C上,直线PA,PB分别与y轴交于点M,N,|PM|=|PN|.求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1),给出下列命题:
①当x>0时,f(x)=﹣e﹣x(x﹣1);
②函数f(x)有2个零点;
③f(x)<0的解集为(﹣∞,﹣1)∪(0,1),
x1 , x2∈R,都有|f(x1)﹣f(x2)|<2.其中正确命题的个数是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

同步练习册答案