精英家教网 > 高中数学 > 题目详情

【题目】在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为连续10天,每天新增疑似病例不超过7.过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是(

甲地:中位数为2,极差为5 乙地:总体平均数为2,众数为2

丙地:总体平均数为1,总体方差大于0 丁地:总体平均数为2,总体方差为3

A.甲地B.乙地C.丙地D.丁地

【答案】AD

【解析】

逐个选项分析是否一定满足每天新增疑似病例不超过7人即可.

A,因为甲地中位数为2,极差为5,故最大值不会大于.A正确.

B,若乙地过去10日分别为则满足总体平均数为2,众数为2,但不满足每天新增疑似病例不超过7人,故B错误.

C,若丙地过去10日分别为,则满足总体平均数为1,总体方差大于0, 但不满足每天新增疑似病例不超过7人,故C错误.

D,利用反证法,若至少有一天疑似病例超过7人,则方差大于.与题设矛盾,故连续10天,每天新增疑似病例不超过7人.故D正确.

故选:AD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】天干地支纪年法,源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推.排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推.已知2018年为戊戌年,那么到改革开放一百年,即2078年为__________年.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C,点P01.

(1)过P点作斜率为kk0)的直线交椭圆CA点,求弦长|PA|(用k表示);

(2)过点P作两条互相垂直的直线PAPB,分别与椭圆交于AB两点,试问:直线AB是否经过一定点?若存在,则求出定点,若不存在,则说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式0<ax2+bx+c<1的解集为(0,1),则实数a的取值范围是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)(2017·长春市二模)如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)是定义在上的奇函数.

(Ⅰ)求的值

(Ⅱ)求函数的值域

(Ⅲ)当 恒成立求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1+﹣1nan=2n﹣1,则{an}的前60项和为( )

A. 3690 B. 3660 C. 1845 D. 1830

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.

(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,X的分布列及数学期望;

(Ⅱ)求教师甲在一场比赛中获奖的概率.

查看答案和解析>>

同步练习册答案