精英家教网 > 高中数学 > 题目详情

【题目】已知函数处取得极值,且在处的切线的斜率为

(1) 的解析式;

(2) 求过点的切线方程.

【答案】(1);(2).

【解析】试题分析:(1)由函数处取得极值,且在处的切线的斜率为求出导函数,可得的两根,且解方程组即可求得的值,从而求得的解析式;(2)设切点求切线方程,将点切线方程得到解方程可得从可得切线斜率,运用点斜式方程,进而得到所求切线的方程.

试题解析:(1)函数f(x)=ax3+bx2+cx的导数为f'(x)=3ax2+2bx+c, 依题

f'(0)=﹣3c=﹣3 ∴a=1,b=0, ∴f(x)=x3﹣3x

(2)解:设切点为(x0 , x03﹣3x0), ∵f'(x)=3x2﹣3∴切线的斜率为f'(x0)=3x02﹣3,∴切线方程为y﹣(x03﹣3x0)=(3x02﹣3)(x﹣x0),

又切线过点A(2,2),

∴2﹣(x03﹣3x0)=(3x02﹣3)(2﹣x0),

∴2x03﹣6x02+8=0,即为2(x0+1)(x0﹣2)2=0, 解得x0=﹣12,

可得过点A(2,2)的切线斜率为09,

即有过点A(2,2)的切线方程为y﹣2=0y﹣2=9(x﹣2),

即为y﹣2=09x﹣y﹣16=0 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2-ax+a2-13=0},B={x|x2-4x+3=0},C={x|x2—3x=0}.

(1)若A∩B=AB,求a的值;

(2)若,a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AB⊥平面ACD,DE∥AB,△ACD是等腰三角形,∠CAD=120°,AD=DE=2AB.
(I)求证:平面BCE⊥平面CDE;
(II)求平面BCE与平面ADEB所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程为(α为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.

(1)写出圆C的极坐标方程及圆心C的极坐标;

(2)直线l的极坐标方程为与圆C交于M,N两点,求CMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=2an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)设Sn为数列{ }的前n项和,求证:1≤Sn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+1|﹣2|x﹣a|,a>0. (Ⅰ)当a=1时,求不等式f(x)>1的解集;
(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若非零向量 与向量 的夹角为钝角, ,且当 时, (t∈R)取最小值 .向量 满足 ,则当 取最大值时, 等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体的棱长为, 分别是棱的中点,过直线的平面分别与棱.交于,设,给出以下四个命题:

平面 平面;②当且仅当时,四边形的面积最小; 四边形周长是单调函数;四棱锥的体积为常函数;

以上命题中真命题的序号为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为 . (Ⅰ)求cosB的值;
(Ⅱ)若 ,求a和c的值.

查看答案和解析>>

同步练习册答案