【题目】已知二次函数在区间上有最大值4,最小值为0.
(1)求函数的解析式;
(2)设,若对任意恒成立,试求的取值范围.
【答案】(1)f(x)=x2﹣2x+1;(2)[33,+∞)
【解析】
(1)根据二次函数的性质讨论对称轴,即可求解最值,可得解析式.
(2)求解g(x)的解析式,令,则,问题转化为当u∈[,8]时,恒成立,分离参数即可求解.
(1)f(x)=mx2﹣2mx+n+1(m>0)
其对称轴x=1,x∈[0,3]上,
∴当x=1时,f(x)取得最小值为﹣m+n+1=0.
当x=3时,f(x)取得最大值为3m+n+1=4.
由①②解得:m=1,n=0
故得函数f(x)的解析式为:f(x)=x2﹣2x+1
(2)由g(x),令,则,
问题转化为当u∈[,8]时,恒成立,
即u2﹣4u+1﹣ku2≤0恒成立,
∴k.
设,则t∈[,8]
可得:1﹣4t+t2=(t﹣2)2﹣3≤k.
当t=8时,(1﹣4t+t2)max=33
故得k的取值范围是[33,+∞)
科目:高中数学 来源: 题型:
【题目】已知为实数,用表示不超过的最大整数.
(1)若函数,求的值;
(2)若函数,求的值域;
(3)若存在且,使得,则称函数是函数,若函数 是函数,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列结论:
(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862.
(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲.
(3)若两个变量的线性相关性越强,则相关系数的值越接近于1.
(4)对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.
则正确的个数是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,过点作抛物线的两条切线,切点分别为,直线的斜率为2.
(1)求抛物线的标准方程;
(2)与圆相切的直线,与抛物线交于两点,若在抛物线上存在点,使,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,分别为内角所对的边,且满足,
(I)求C的大小;
(II)现给出三个条件:①;②;③.试从中选择两个可以确定的条件,写出你的选择并以此为依据求的面积S.(只写出一种情况即可)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足:, . (其中为自然对数的底数,)
(Ⅰ)证明:;
(Ⅱ)设,是否存在实数,使得对任意成立?若存在,求出的一个值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某保险公司的推销员中随机抽取50名,统计这些推销员某月的月销售额(单位:千元),由统计结果得如图频数分别表:
月销售额 分组 | [12.25,14.75) | [14.75,17.25) | [17.25,19.75) | [19.75,22.25) | [22.25,24.75) |
频数 | 4 | 10 | 24 | 8 | 4 |
(1)作出这些数据的频率分布直方图;
(2)估计这些推销员的月销售额的平均数(同一组中的数据用该组区间的中点作代表);
(3)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com