(本题满分14分)设数列的前项和为,且满足(=1,2,3,…).
(1)求数列的通项公式;
(2)若数列满足,且,求数列的通项公式;
(1) ; (2) 。
【解析】
试题分析:(Ⅰ)由题设知a1=1,an+Sn=2,an+1+Sn+1=2,两式相减:an+1-an+an+1=0,故有2an+1=an,,n∈N+,由此能求出数列{an}的通项公式.
(Ⅱ)由bn+1=bn+an(n=1,2,3,…),知bn+1-bn=()n-1,再由累加法能推导出bn=3-2( )n-1(n=1,2,3,…).
解:(1)当时,,则---------------2分
当时 ,,
则--------------------------------4分
所以,数列是以首项,公比为的等比数列,从而----8分
(2)
当时,--10分
-----------12分
又满足,---------14分
考点:本试题主要第(Ⅰ)题考查迭代法求数列通项公式的方法,第(Ⅱ)题考查累加法求数列通项公式的方法。
点评:解决该试题的关键是能够利用迭代法表示出通项公式的运用,寻找规律,以及根据列加法求解数列的通项公式的问题。
科目:高中数学 来源: 题型:
(本题满分14分)
设函数,。
(1)若,过两点和的中点作轴的垂线交曲线于点,求证:曲线在点处的切线过点;
(2)若,当时恒成立,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源:2011——2012学年湖北省洪湖二中高三八月份月考试卷理科数学 题型:解答题
(本题满分14分)设椭圆的左、右焦点分别为F1与
F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为。
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切
且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三寒假作业数学卷三 题型:解答题
(本题满分14分)设M是由满足下列条件的函数构成的集合:“①方有实数根;②函数的导数满足”
(I)证明:函数是集合M中的元素;
(II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题
本题满分14分)
设函数.
(1)若,求函数的极值;
(2)若,试确定的单调性;
(3)记,且在上的最大值为M,证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com