精英家教网 > 高中数学 > 题目详情

已知异面直线l1l2l1l2MNl1l2的公垂线,MN4Al1Bl2AMBN2OMN中点.

①求l1OB的成角.

②求A点到OB距离.

答案:
解析:

  解析:(1)如图,画两个相连的正方体,将题目条件一一标在图中.

  OB在底面上射影NBCD,由三垂线定理,OBCD,又CDMA

  ∴OBMAOBl190°

  (2)连结BO并延长交上底面于E点.

  MEBN

  ∴ME2,又ON2

  ∴

  作AQBE,连结MQ

  对于平面EMO而言,AMAQMQ分别为垂线、斜线、斜线在平面内的射影,由三垂线逆定理得MQEO

  在RtMEO中,

  评述:又在RtAMQ中,,本题通过补形法使较困难的问题变得明显易解;求点到直线的距离,仍然是利用直线与平面垂直的关键条件,抓住“一个面四条线”的图形特征来解决的.

  分析:本题若将条件放入立方体的“原型”中,抓住“一个平面四条线”的图形特征及“直线平面垂直”的关键性条件,问题就显得简单明了.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知⊙C1:(x+3)2+(y-1)2=4和⊙C2:(x-5)2+(y-1)2=4
(1)若直线l过点O(0,0),且被⊙C1截得的弦长为2
3
,求直线l的方程;
(2)设P为平面上的点,满足:过点P的任意互相垂直的直线l1和l2,只要l1和l2与⊙C1和⊙C2分别相交,必有直线l1被⊙C1截得的弦长与直线l2被⊙C2截得的弦长相等,试求所有满足条件的点P的坐标;
(3)将(2)的直线l1和l2互相垂直改为直线l1和l2所成的角为60°,其余条件不变,直接写出所有这样的点P的坐标.(直线与直线所成的角与两条异面直线所成的角类似,只取较小的角度.)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市金山中学高一(上)期末数学试卷(解析版) 题型:解答题

在平面直角坐标系xOy中,已知⊙C1:(x+3)2+(y-1)2=4和⊙C2:(x-5)2+(y-1)2=4
(1)若直线l过点O(0,0),且被⊙C1截得的弦长为,求直线l的方程;
(2)设P为平面上的点,满足:过点P的任意互相垂直的直线l1和l2,只要l1和l2与⊙C1和⊙C2分别相交,必有直线l1被⊙C1截得的弦长与直线l2被⊙C2截得的弦长相等,试求所有满足条件的点P的坐标;
(3)将(2)的直线l1和l2互相垂直改为直线l1和l2所成的角为60°,其余条件不变,直接写出所有这样的点P的坐标.(直线与直线所成的角与两条异面直线所成的角类似,只取较小的角度.)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省汕头市金山中学高一(上)期末数学试卷(解析版) 题型:解答题

在平面直角坐标系xOy中,已知⊙C1:(x+3)2+(y-1)2=4和⊙C2:(x-5)2+(y-1)2=4
(1)若直线l过点O(0,0),且被⊙C1截得的弦长为,求直线l的方程;
(2)设P为平面上的点,满足:过点P的任意互相垂直的直线l1和l2,只要l1和l2与⊙C1和⊙C2分别相交,必有直线l1被⊙C1截得的弦长与直线l2被⊙C2截得的弦长相等,试求所有满足条件的点P的坐标;
(3)将(2)的直线l1和l2互相垂直改为直线l1和l2所成的角为60°,其余条件不变,直接写出所有这样的点P的坐标.(直线与直线所成的角与两条异面直线所成的角类似,只取较小的角度.)

查看答案和解析>>

同步练习册答案