精英家教网 > 高中数学 > 题目详情

【题目】下列判断正确的是(

A.若随机变量服从正态分布,则

B.已知直线平面,直线平面,则的必要不充分条件;

C.若随机变量服从二项分布:,则

D.已知直线经过点,则的取值范围是

【答案】ACD

【解析】

根据正态分布曲线的对称性可判断A选项;B选项为充分不必要条件;根据二项分布均值公式求解可判断C选项;由题意知,根据基本不等式求出的范围即可判断D选项.

A选项,若随机变量服从正态分布,根据正态分布曲线的对称性有,所以A选项正确;

B选项,因为,直线平面,所以直线平面,又直线平面,所以,充分性成立;设,在内取平行于的直线,则,但是相交,必要性不成立,B不正确;

C选项,因为,所以C正确;

D选项,由题意知,因为,所以,当且仅当时取等号,故D正确.

故选:ACD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了了解某市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:,并绘制出频率分布直方图,如图所示.

1)求频率分布直方图中的值,并估计该市高中学生的平均成绩;

2)设四名学生的考试成绩在区间内,两名学生的考试成绩在区间内,现从这6名学生中任选两人参加座谈会,求学生至少有一人被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角三角形ABC中,(如右图所示)

(Ⅰ)若以AC为轴,直角三角形ABC旋转一周,试说明所得几何体的结构特征并求所得几何体的表面积.

(Ⅱ)一只蚂蚁在问题(Ⅰ)形成的几何体上从点B绕着几何体的侧面爬行一周回到点B,求蚂蚁爬行的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥M-ABC中,MA=MB=MC=AC=AB=BC=2OAC的中点,点N在边BC上,且.

1)证明:BO平面AMC

2)求二面角N-AM-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数的图像关于直线对称且当过点作曲线的两条切线,若这两条切线互相垂直,则该函数的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCDABADADBCAPABAD=1.

(Ⅰ)若直线PBCD所成角的大小为BC的长;

(Ⅱ)求二面角BPDA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)当为自然对数的底数)时,求的极小值;

2)讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用 (基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费是与上一年度车辆发生道路交通安全违法行为或者道路交通事故的情况相联系的.交强险第二年价格计算公式具体如下:交强险最终保费基准保费浮动比率).发生交通事故的次数越多,出险次数的就越多,费率也就越髙,具体浮动情况如下表:

某机构为了研究某一品牌普通6座以下私家车的投保情况,为此搜集并整理了100辆这一品牌普通6座以下私家车一年内的出险次数,得到下面的柱状图:

已知小明家里有一辆该品牌普通6座以下私家车且需要续保,续保费用为.

1为事件的估计值;

2的平均估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三边长为abc,有下列四个命题:

①以为边长的三角形一定存在;

②以为边长的三角形一定存在;

③以为边长的三角形一定存在;

④以为边长的三角形一定存在.

其中正确的是(

A.①③B.②③C.②④D.①④

查看答案和解析>>

同步练习册答案