精英家教网 > 高中数学 > 题目详情

()若过点的直线与曲线有公共点,则直线的斜率的取值范围为(    ) A.   B.     C.          D.

C


解析:

设直线方程为,即,直线与曲线有公共点,

圆心到直线的距离小于等于半径

,选择C

另外,数形结合画出图形也可以判断C正确。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知图形OAPBCD是由不等式组
0≤x≤e2
0≤y≤e
y≥lnx
,围成的图形,其中曲线段APB的方程为y=lnx(1≤x≤e2),P为曲线上的任一点.
(1)证明:直线OC与曲线段相切;
(2)若过P点作曲线的切线交图形的边界于M,N,求图形被切线所截得的左上部分的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角梯形ABCD中,AD⊥AB,BC⊥AB,AD=3,AB=4,BC=
3
,点E在线段AB的延长线上.曲线段DE上任一点到A、B两点的距离之和都相等.
(1)建立适当的直角坐标系,求曲线段DE的方程;
(2)试问:过点C能否作一条直线l与曲线段DE相交于两点M、N,使得线段MN以C为中点?若能,则求直线l的方程;
若不能,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过点,且与圆相内切.

(1)求动圆的圆心的轨迹方程;

(2)设直线(其中)与(1)中所求轨迹交于不同两点,与双曲

线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过点,且与圆相内切.

(1)求动圆的圆心的轨迹方程;

(2)设直线(其中)与(1)中所求轨迹交于不同两点,与双曲

线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

同步练习册答案