精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为为参数).

1)求的交点的直角坐标;

2)求上的点到直线的距离的最大值.

【答案】1)(30)和;(2

【解析】

(1)根据可得曲线的直角坐标方程,消去参数可得直线的直角坐标方程,再联立方程组可得答案;

(2)由椭圆的参数方程设上的动点,再用点到直线的距离求出,利用三角函数求得最大值.

1)由,,

所以曲线C的直角坐标方程为,

消去参数,

所以直线l的直角坐标方程为

,,解得

的交点直角坐标为(30)和

2)设曲线上一点

到直线的距离,其中,

所以当时,取最大值.

上的点到直线的距离的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点

1)求椭圆的方程;

2)求的取值范围;

3)设直线的斜率分别为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某水果种植基地引进一种新水果品种,经研究发现该水果每株的产量(单位:)和与它“相近”的株数具有线性相关关系(两株作物“相近”是指它们的直线距离不超过),并分别记录了相近株数为0,1,2,3,4时每株产量的相关数据如下:

0

1

2

3

4

15

12

11

9

8

(1)求出该种水果每株的产量关于它“相近”株数的回归方程;

(2)有一种植户准备种植该种水果500株,且每株与它“相近”的株数都为,计划收获后能全部售出,价格为10元,如果收入(收入=产量×价格)不低于25000元,则的最大值是多少?

(3)该种植基地在如图所示的直角梯形地块的每个交叉点(直线的交点)处都种了一株该种水果,其中每个小正方形的边长和直角三角形的直角边长都为,已知该梯形地块周边无其他树木影响,若从所种的该水果中随机选取一株,试根据(1)中的回归方程,预测它的产量的分布列与数学期望.

附:回归方程中斜率和截距的最小二乘法估计公式分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

1)当时,证明,

2)若函数上存在极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线C)的焦点F在直线上,平行于x轴的两条直线分别交抛物线CAB两点,交该抛物线的准线于DE两点.

1)求抛物线C的方程;

2)若F在线段上,P的中点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线相交于两点,与圆相切于点,为线段中点,若这样的直线恰有,的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面,其中底面为等腰梯形,的中点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直角梯形中,,,,四边形为矩形,.

1)求证:平面平面;

2)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在的平面垂直于平面的中点,.

1)求异面直线所成角的余弦值;

2)求二面角的正弦值.

查看答案和解析>>

同步练习册答案