精英家教网 > 高中数学 > 题目详情

如图(1)所示,⊙O的直径AB=4,点C,D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图(2)所示).
 
(1)求证:OF∥平面ACD;
(2)在上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求点G到平面ACD的距离;若不存在,请说明理由.

(1)见解析(2)存在,h=

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,垂直于矩形所在平面,

(1)求证:
(2)若矩形的一个边,,则另一边的长为何值时,三棱锥的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,直三棱柱ABCA1B1C1中,D,E分别是AB,BB1的中点.

(1)证明:BC1∥平面A1CD;
(2)设AA1=AC=CB=2,AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.

(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E所成的角为60°时,求三棱锥C1A1B1E的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且.

(1)设的中点为,求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC ­A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1,BC的中点.

(1)证明:平面AEB⊥平面BB1C1C;
(2)证明:C1F∥平面ABE;
(3)设P是BE的中点,求三棱锥P ­B1C1F的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD的中点,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿线EF把四边形CDFE折起如图b,使平面CDFE⊥平面ABEF.

(1)求证:AB⊥平面BCE;
(2)求三棱锥C ­ADE体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱ABC—A1B1C1的各棱长都相等,M、E分别是和AB1的中点,点F在BC上且满足BF∶FC=1∶3.

(1)求证:BB1∥平面EFM;
(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A-BB1D1D的体积为    cm3.

查看答案和解析>>

同步练习册答案