精英家教网 > 高中数学 > 题目详情
设α、β为两个不同的平面,m、n为两条不同的直线,且m?α,n?β,有如下的两个命题:p:若α∥β,则m∥n;q:若m⊥n,则α⊥β.那么(  )
分析:先判断两个简单命题的真假性,再判断复合命题的真假性
解答:解:由面面平行的性质定理知,命题p是假命题
由面面垂直的判定定理知,命题q是假命题
∴p或q是假命题,p且q是假命题,非p或q是真命题,非p且q是假命题
故选A
点评:本题考查复合命题的真假判断,要记住口诀(或命题:有真则真;切命题:有假则假;非命题:真假相反).属简单题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、设a、b为两条不同的直线,α、β为两个不同的平面.下列命题中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设l,m,n为三条不同的直线,α,β为两个不同的平面,下列命题中正确的个数是(  )
(1)若l∥m,m∥n,l⊥α,则n⊥α;          
(2)若m∥β,α⊥β,l⊥α,则l⊥m;
(3)若m?α,n?α,l⊥m,l⊥n,则l⊥α;    
(4)若l∥m,m⊥α,n⊥α,则l⊥n.

查看答案和解析>>

科目:高中数学 来源: 题型:

设l,m为两条不同的直线,α,β为两个不同的平面,下列命题中正确的是
②④
②④
.(填序号)
①若l⊥α,m∥β,α⊥β,则l⊥m;
②若l∥m,m⊥α,l⊥β,则α∥β;
③若l∥α,m∥β,α∥β,则l∥m;
④若α⊥β,α∩β=m,l?β,l⊥m,则l⊥α.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面内,设A,B为两个不同的定点,动点P满足:
PA
PB
=k2
(k为实常数),则动点P的轨迹为(  )
A、圆B、椭圆C、双曲线D、不确定

查看答案和解析>>

同步练习册答案