精英家教网 > 高中数学 > 题目详情
14.已知|$\overrightarrow a$|=$\sqrt{3}$,|$\overrightarrow b$|=2.
(1)若$\overrightarrow a$与$\overrightarrow b$的夹角为150°,求|$\overrightarrow a$+2$\overrightarrow b$|;
(2)若$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow a$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角大小.

分析 (1)利用|$\overrightarrow a$+2$\overrightarrow b$|=$\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}}$即可得出;
(2)由$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow a$垂直,可得($\overrightarrow a$-$\overrightarrow b$)•$\overrightarrow a$=${\overrightarrow{a}}^{2}-\overrightarrow{a}•\overrightarrow{b}$=0,化简即可得出.

解答 解:(1)∵|$\overrightarrow a$+2$\overrightarrow b$|=$\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}}$=$\sqrt{3+4×\sqrt{3}×2cos15{0}^{°}+4×{2}^{2}}$=$\sqrt{19-12}$=$\sqrt{7}$;
(2)∵$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow a$垂直,
∴($\overrightarrow a$-$\overrightarrow b$)•$\overrightarrow a$=${\overrightarrow{a}}^{2}-\overrightarrow{a}•\overrightarrow{b}$=3-2$\sqrt{3}$$cos<\overrightarrow{a},\overrightarrow{b}>$=0,
∴$cos<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\sqrt{3}}{2}$,
∴$<\overrightarrow{a},\overrightarrow{b}>$=30°.

点评 本题考查了数量积运算性质、向量夹角公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-ax,a∈R.
(Ⅰ)若函数f(x)在x=0处的切线过点(1,0),求a的值;
(Ⅱ)若函数f(x)在(-1,+∞)上不存在零点,求a的取值范围;
(Ⅲ)若a=1,设函数$g(x)=\frac{1}{f(x)+ax}+\frac{4x}{{{e^x}-f(x)+4}}$,求证:当x≥0时,g(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知四面体的四个顶点S(0,6,4),A(3,5,3),B(-2,11,-5),C(1,-1,4),求从顶点S向底面ABC所引高的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.矩形ABCD的顶点A,B在直线y=2x+m上,C,D在抛物线y2=4x上,该矩形的外接圆方程为x2+y2-x-4y-t=0.
(1)求矩形ABCD对角线交点M的坐标;
(2)求此矩形的长,并求m,t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列四个结论:
①若x>0,则x>sinx恒成立;
②命题“若x-sinx=0则x=0”的逆命题为“若x≠0则x-sinx≠0”;
③“命题p或q为真”是“命题p且q为真”的充分不必要条件;
④命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设全集U是实数集R,M={x|2x≥4},N={x|1<x<3},则集合M∩N是(  )
A.{x|2<x<3}B.{x|2≤x<3}C.{x|1<x≤2}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义在[-2,2]上的奇函数f(x)在区间[-2,0]上单调递减,则不等式f(1-x)+f(-x)<0的解集为[-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n+1}}{{S}_{n}{S}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求到点A(-5,0)和B(5,0)的距离的平方差为36的动点的轨迹方程.

查看答案和解析>>

同步练习册答案