精英家教网 > 高中数学 > 题目详情
已知数列an的前n项和为Sn,a1=2,nan+1=Sn+n(n+1),
(1)求数列an的通项公式;
(2)设bn=
Sn2n
,如果对一切正整数n都有bn≤t,求t的最小值.
分析:(1)由nan+1=Sn+n(n+1)可得(n-1)an=Sn-1+n(n-1)(n≥2)
两式相减可整理可得,an+1=an+2(n≥2),由a1=2,可得a2=S1+2=4,a2-a1=2
故数列{an}是以2为首项,以2为公差的等差数列,由等差数列的通项公式可求
(2)由(1)可求,Sn=n(n+1),bn=
Sn
2n
=
n(n+1)
2n

由数列的单调性可知,bk≥bk+1,bk≥bk-1,从而可求数列{bn}的最大项,由bn≤t恒成立可得t≥bn的最大值,进而可求t的最小
解答:解:(1)∵nan+1=Sn+n(n+1)
∴(n-1)an=Sn-1+n(n-1)(n≥2)
两式相减可得,nan+1-(n-1)an=Sn-Sn-1+2n
即nan+1-(n-1)an=an+2n,(n≥2)
整理可得,an+1=an+2(n≥2)(*)
由a1=2,可得a2=S1+2=4,a2-a1=2适合(*)
故数列{an}是以2为首项,以2为公差的等差数列,由等差数列的通项公式可得,an=2+(n-1)×2=2n
(2)由(1)可得,Sn=n(n+1),
bn=
Sn
2n
=
n(n+1)
2n

由数列的单调性可知,bk≥bk+1,bk≥bk-1
k(k+1)
2k
(k+2)(k+1)
2k+1
k(k+1)
2k
k(k-1)
2k-1
解不等式可得2≤k≤3,k∈N*,k=2,或k=3,
b2=b3=
3
2
为数列{bn}的最大项
由bn≤t恒成立可得t≥
3
2
,则t的最小值
3
2
点评:本题主要考查了由数列的递推公式求解数列的通项公式,考查了等差数列的通项公式的应用,在数列中,恒成立的问题一般都转化为求解数列的最值问题,而解决此类问题的关键是根据数列的单调性求解数列的最大(最小)项问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an的前n项和为Sn,且a1=1,Sn=n2an(n∈N),
(1)试计算S1,S2,S3,S4,并猜想Sn的表达式;
(2)证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的前n项和Sn=
32
(an-1)
,n∈N+
(1)求an的通项公式;
(2)设n∈N+,集合An={y|y=ai,i≤n,i∈N+},B={y|y=4m+1,m∈N+}.现在集合An中随机取一个元素y,记y∈B的概率为p(n),求p(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列
an
的前n项和为Sn,且Sn=1-an (n∈N*
(I )求数列
an
的通项公式;
(Ⅱ)已知数列
bn
的通项公式bn=2n-1,记cn=anbn,求数列
cn
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an}的前n项和为sn,满足(p-1)sn=p2-an,其中p为正常数,且p≠1.
(1)求证:数列{an}为等比数列,并求出{an}的通项公式;
(2)若存在正整数M,使得当n≥M时,a1a4a7…a3n-2>a36恒成立,求出M的最小值;
(3)当p=2时,数列an,2xan+1,2yan+2成等差数列,其中x,y均为整数,求出x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的前n项和为Sn
(Ⅰ)若数列an是等比数列,满足2a1+a3=3a2,a3+2是a2,a4的等差中项,求数列an的通项公式;
(Ⅱ)是否存在等差数列ann∈N*,使对任意n∈N*都有anSn=2n2(n+1)?若存在,请求出所有满足条件的等差数列;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案