精英家教网 > 高中数学 > 题目详情

【题目】为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

性别

是否需要志愿者

需要

40

30

不需要

160

270

1估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

2请根据上面的数据分析该地区的老年人需要志愿者提供帮助与性别有关吗

【答案】12有99%的把握认为该地区的老年人是否需要帮助与性别有关.

【解析】

试题分析:1由列联表可知调查的500位老年人中有位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值;2根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.

试题解析:

解:1调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为

2根据表中数据计算得:

由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个不透明的袋子装有4个完全相同的小球,球上分别标有数字为0,1,2,2,现甲从中摸出一个球后便放回,乙再从中摸出一个球,若摸出的球上数字大即获胜(若数字相同则为平局),则在甲获胜的条件下,乙摸1号球的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)设函数f(x)=|x﹣ |+|x﹣a|,x∈R,若关于x的不等式f(x)≥a在R上恒成立,求实数a的最大值;
(2)已知正数x,y,z满足x+2y+3z=1,求 + + 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:对任意都有.

1)求证:函数是奇函数;

2)如果当时,有,试判断上的单调性,并用定义证明你的判断;

(3)在(2)的条件下,若对满足不等式的任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△中,,点边上,且.

(1)若,求

(2)若,求△的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a、b、c,且满足3asinC=4ccosA, =3.
(1)求△ABC的面积S;
(2)若c=1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,AC为⊙O的直径,D为 的中点,E为BC的中点.

(1)求证:DE∥AB;
(2)求证:ACBC=2ADCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数);以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的普通方程与曲线的直角坐标方程;

(Ⅱ)若把曲线各点的横坐标伸长到原来的倍,纵坐标变为原来的,得到曲线,求曲线的方程;

(Ⅲ)设为曲线上的动点,求点到曲线上点的距离的最小值,并求此时点的坐标.

查看答案和解析>>

同步练习册答案