精英家教网 > 高中数学 > 题目详情
14、焦点在直线3x-4y-12=0上,并且是标准的抛物线方程是
y2=16x或x2=-12y
分析:先根据抛物线是标准方程可确定焦点的位置,再由直线3x-4y-12=0与坐标轴的交点可得到焦点坐标,根据抛物线的焦点坐标和抛物线的标准形式可得到标准方程.
解答:解:因为是标准方程,所以其焦点应该在坐标轴上,
所以其焦点坐标即为直线3x-4y-12=0与坐标轴的交点
所以其焦点坐标为(4,0)和(0,-3)
当焦点为(4,0)时可知其方程中的P=8,
所以其方程为y2=16x,
当焦点为(0,-3)时可知其方程中的P=6,
所以其方程为x2=-12y
故答案为:y2=16x或x2=-12y.
点评:本题主要考查抛物线的标准方程.抛物线的标准方程的焦点一定在坐标轴上且定点一定在原点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、求焦点在直线3x-4y-12=0上的抛物线的标准方程及其准线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

6、焦点在直线3x-4y-12=0上的抛物线的标准方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

焦点在直线3x-4y-12=0上,且顶点在原点的抛物线标准方程为
y2=16x或x2=-12y
y2=16x或x2=-12y

查看答案和解析>>

科目:高中数学 来源: 题型:

焦点在直线3x-4y-12=0上,抛物线的标准方程是
y2=16x;x2=-12y
y2=16x;x2=-12y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的顶点在原点,对称轴是x轴,焦点在直线3x-4y-12=0上,则该抛物线的方程为
 

查看答案和解析>>

同步练习册答案