【题目】已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)四边形的顶点在椭圆上,且对角线、过原点,若,
(1)求的最值;
(2)求证;四边形的面积为定值.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:an+1-an=d(n∈N*),前n项和记为Sn,a1=4,S3=21.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足b1=,bn+1-bn=2an,求数列{bn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,过点的直线的参数方程为(为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与曲线相交于, 两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若=12,其中O为坐标原点,求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是奇函数,则实数m的值是______;若函数f(x)在区间[-1,a-2]上满足对任意x1≠x2,都有成立,则实数a的取值范围是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求f(x)的定义域;
(2)当x∈(1,+∞),
①求证:f(x)在区间(1,+∞)上是减函数;
②求使关系式f(2+m)>f(2m-1)成立的实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的顶点, 在椭圆上, 在直线上,且.
()求椭圆的离心率.
()当边通过坐标原点时,求的长及的面积.
()当,且斜边的长最大时,求所在直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间(已知该校学生平均每天运动的时间范围是 ),如下表所示.
男生平均每天运动的时间分布情况:
女生平均每天运动的时间分布情况:
(1)假设同组中的每个数据均可用该组区间的中间值代替,请根据样本估算该校男生平均每天运动的时间(结果精确到0.1).
(2)若规定平均每天运动的时间不少于的学生为“运动达人”,低于的学生为“非运动达人”.
(ⅰ)根据样本估算该校“运动达人”的数量;
(ⅱ)请根据上述表格中的统计数据填写下面列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“运动达人”与性别有关.
参考公式: ,其中.
参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com