精英家教网 > 高中数学 > 题目详情

【题目】IT从业者绘制了他在26岁~35(2009年~2018)之间各年的月平均收入(单位:千元)的散点图:

1)由散点图知,可用回归模型拟合的关系,试根据附注提供的有关数据建立关于的回归方程

2)若把月收入不低于2万元称为“高收入者”.

试利用(1)的结果,估计他36岁时能否称为“高收入者”?能否有95%的把握认为年龄与收入有关系?

附注:①.参考数据:,,,其中,取

.参考公式:回归方程中斜率和截距的最小二乘估计分别为:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

.

【答案】(1)(2)他36岁时能称为“高收入者”,95%的把握认为年龄与收入有关系

【解析】

(1)分别计算出,带入即可。

(2)将2代入比较即可,计算观测值,与临界值比较可得结论。

1)令,则

(2)带入

(千元)≥2(万元)

∴他36岁时能称为“高收入者”.

故有95%的把握认为年龄与收入有关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.巴蜀中学高2018届学生为了调查支付宝在人群中的使用情况,在街头随机对名市民进行了调查,结果如下.

(1)对名市民按年龄以及是否使用支付宝进行分组,得到以下表格,试问能否有的把握认为“使用支付宝与年龄有关”?

使用支付宝

不使用支付宝

合计

岁以上

岁以下

合计

(2)现采用分层抽样的方法,从被调查的岁以下的市民中抽取了位进行进一步调查,然后从这位市民中随机抽取位,求至少抽到位“使用支付宝”的市民的概率;

(3) 为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有的概率获得元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一周使用了次支付宝,记为这一周他获得的奖励金数,求的分布列和数学期望.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,若函数存在与直线平行的切线,求实数的取值范围;

(2)当时,,若的最小值是,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】麻团又叫煎堆,呈球形华北地区称麻团,是一种古老的中华传统特色油炸面食寓意团圆。制作时以糯米粉团炸起,加上芝麻而制成,有些包麻茸、豆沙等馅料,有些没有。一个长方体形状的纸盒中恰好放入4个球形的麻团,它们彼此相切,同时与长方体纸盒上下底和侧面均相切,其俯视图如图所示,若长方体纸盒的表面积为576 则一个麻团的体积为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2(x1)|xa|.

(1)a=-1,解方程f(x)1

(2)若函数f(x)R上单调递增,求实数a的取值范围;

(3)是否存在实数a,使不等式f(x)≥2x3对任意xR恒成立?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知右焦点为的椭圆关于直线对称的图形过坐标原点.

是椭圆的左顶点,斜率为的直线交两点,点上,.

(Ⅰ)当时,求的面积;

(Ⅱ)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查人们在购物时的支付习惯,某超市对随机抽取的600名顾客的支付方式进行了统计,数据如下表所示:

支付方式

微信

支付宝

购物卡

现金

人数

200

150

150

100

现有甲、乙、丙三人将进入该超市购物,各人支付方式相互独立,假设以频率近似代替概率.

(1)求三人中使用微信支付的人数多于现金支付人数的概率;

(2)记为三人中使用支付宝支付的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值

(2)定义:若函数在区间 上的取值范围为,则称区间为函数的“美丽区间”.试问函数上是否存在“美丽区间”?若存在,求出所有符合条件的“美丽区间”;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.口袋中有质地、大小完全相同的5个球,编号分别为12345,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.

)求甲赢且编号的和为6的事件发生的概率;

)这种游戏规则公平吗?试说明理由.

查看答案和解析>>

同步练习册答案