精英家教网 > 高中数学 > 题目详情

某校组织一次冬令营活动,有8名同学参加,其中有5名男同学,3名女同学,为了活动的需要,要从这8名同学中随机抽取3名同学去执行一项特殊任务,记其中有X名男同学.
(1)求X的分布列;
(2)求去执行任务的同学中有男有女的概率.

(1) X的分布列为

X
0
1
2
3
P




(2)

解析解:(1)X的可能取值为0,1,2,3.
P(X=0)=
P(X=1)=
P(X=2)=
P(X=3)=.
即X的分布列为

X
0
1
2
3
P




(2)去执行任务的同学中有男有女的概率为
P(X=1)+P(X=2)=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:

时间(分钟)
10~20
20~30
30~40
40~50
50~60
L1的频率
0.1
0.2
0.3
0.2
0.2
L2的频率
0
0.1
0.4
0.4
0.1
现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站.
(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?
(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针地(1)的选择方案,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

箱子里有3双不同的手套,随机拿出2只,记事件A表示“拿出的手套配不成对”;事件B表示“拿出的都是同一只手上的手套”.
(1)请列出所有的基本事件;
(2)分别求事件A、事件B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”.
(1)求P(A),P(B),P(AB);
(2)当已知蓝色骰子的点数为3或6时,求两颗骰子的点数之和大于8的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

观察下面一组组合数等式:



…………
(1)由以上规律,请写出第个等式并证明;
(2)随机变量,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

齐王与田忌赛马,田忌的上马优于齐王的中马,劣于齐王的上马,田忌的中马优于齐王的下马,劣于齐王的中马,田忌的下马劣于齐王的下马,现各出上、中、下三匹马分组进行比赛.
(1) 如果双方均不知道对方马的出场顺序,求田忌获胜的概率;
(2) 为了得到更大的获胜概率,田忌预先了解到齐王第一场必出上等马.那么,田忌怎样安排出马顺序,才能使自己获胜的概率最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若盒中装有同一型号的灯泡共10只,其中有8只合格品,2只次品
(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率;
(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中国男子篮球职业联赛总决赛采用七场四胜制(即先胜四场者获胜).进入总决赛的甲乙两队中,若每一场比赛甲队获胜的概率为,乙队获胜的概率为,假设每场比赛的结果互相独立.现已赛完两场,乙队以暂时领先.
(1)求甲队获得这次比赛胜利的概率;
(2)设比赛结束时两队比赛的场数为随机变量,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“抛阶砖”是国外游乐场的典型游戏之一.参与者只须将手上的“金币”(设“金币”的半径为1)抛向离身边若干距离的阶砖平面上,抛出的“金币”若恰好落在任何一个阶砖(边长为2.1的正方形)的范围内(不与阶砖相连的线重叠),便可获大奖.不少人被高额奖金所吸引,纷纷参与此游戏但很少有人得到奖品,请用所学的概率知识解释这是为什么.

查看答案和解析>>

同步练习册答案