精英家教网 > 高中数学 > 题目详情

【题目】已知函数k为常数,).

1)在下列条件中选择一个________使数列是等比数列,说明理由;

①数列是首项为2,公比为2的等比数列;

②数列是首项为4,公差为2的等差数列;

③数列是首项为2,公差为2的等差数列的前n项和构成的数列.

2)在(1)的条件下,当时,设,求数列的前n项和.

【答案】1)②,理由见解析;(2

【解析】

1)选②,由和对数的运算性质,以及等比数列的定义,即可得到结论;

2)运用等比数列的通项公式可得,进而得到,由数列的裂项相消求和可得所求和.

1)①③不能使成等比数列.②可以:由题意

,得,且.

常数为非零常数,

数列是以为首项,为公比的等比数列.

2)由(1)知,所以当时,.

因为

所以,所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(k+)lnx+,k∈[4,+∞),曲线y=f(x)上总存在两点M(x1,y1),N(x2,y2),使曲线y=f(x)在M,N两点处的切线互相平行,则x1+x2的取值范围为

A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,离心率为

1)求椭圆的标准方程;

2)设为坐标原点,为直线上一点,过的垂线交椭圆于.当四边形是平行四边形时,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

6

14

18

27

25

20

1)从空气质量指数属于的天数中任取3天,求这3天中空气质量至少有2天为优的概率.

2)已知某企业每天因空气质量造成的经济损失(单位:元)与空气质量指数的关系式为假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为,,9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.

i)记该企业9月每天因空气质量造成的经济损失为元,求的分布列;

ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是边长为2的正三角形,是等腰直角三角形.沿其斜边翻折到,使,设的中点.

1)求证:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程,焦点为,已知点上,且点到点的距离比它到轴的距离大1.

(1)试求出抛物线的方程;

(2)若抛物线上存在两动点在对称轴两侧),满足为坐标原点),过点作直线交两点,若,线段上是否存在定点,使得恒成立?若存在,请求出的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为,以下结论中不正确的为

A. 15名志愿者身高的极差小于臂展的极差

B. 15名志愿者身高和臂展成正相关关系,

C. 可估计身高为190厘米的人臂展大约为189.65厘米,

D. 身高相差10厘米的两人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:

AQI指数值

0~50

51~100

101~150

151~200

201~300

>300

空气质量

轻度污染

中度污染

重度污染

严重污染

下图是某市10月1日—20日AQI指数变化趋势:

下列叙述错误的是

A. 这20天中AQI指数值的中位数略高于100

B. 这20天中的中度污染及以上的天数占

C. 该市10月的前半个月的空气质量越来越好

D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年开始,我省将试行“3+1+2“的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是(  )

A.甲的物理成绩领先年级平均分最多

B.甲有2个科目的成绩低于年级平均分

C.甲的成绩从高到低的前3个科目依次是地理、化学、历史

D.对甲而言,物理、化学、地理是比较理想的一种选科结果

查看答案和解析>>

同步练习册答案