精英家教网 > 高中数学 > 题目详情
20.如果实数x.y满足等式(x一1)2+y2=$\frac{3}{4}$,那么,$\frac{y}{x}$的最大值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

分析 设$\frac{y}{x}$=k,$\frac{y}{x}$的最大值就等于连接原点和圆上的点的直线中斜率的最大值,由数形结合法,易得答案.

解答 解:设$\frac{y}{x}$=k,则y=kx表示经过原点的直线,k为直线的斜率.
所以求$\frac{y}{x}$的最大值就等价于求同时经过原点和圆上的点的直线中斜率的最大值.
从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,
此时的斜率就是其倾斜角∠EOC的正切值.
易得|OC|=1,|CE|=$\frac{\sqrt{3}}{2}$,可由勾股定理求得|OE|=$\frac{1}{2}$,
于是可得到k=tan∠EOC=$\sqrt{3}$,即为$\frac{y}{x}$的最大值.
故选:D.

点评 本题考查直线与圆的位置关系,数形结合是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设函数f(x)在R上是奇函数,当x>0时,f(x)=x(2-x).
(1)求f(0)的值;
(2)求当x<0时,f(x)的表达式;
(3)写出f(x)的表达式;
(4)作出f(x)的图象;
(5)指出函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.抛物线y=x2上到直线y=x-2的距离最短的点的坐标是($\frac{1}{2}$,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知|$\overrightarrow{a}$|=1,$\overrightarrow{b}$=(1,3),向量$\overrightarrow{a}\\;\\;与\overrightarrow{b}$与$\overrightarrow{b}$的夹角为120°.
(1)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的值;
(2)求向量$\overrightarrow{a}$$+\overrightarrow{b}$与向量-$\overrightarrow{a}$$+\frac{1}{2}$$\overrightarrow{b}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合M={x|x≤1},P={x|x>t},若M∪P=R,则实数t的取值范围是t<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.三个数a=($\frac{2}{3}$)${\;}^{\frac{3}{4}}$,b=($\frac{2}{3}$)${\;}^{\frac{2}{3}}$,c=($\frac{1}{3}$)${\;}^{\frac{3}{4}}$的大小关系是(  )
A.b<c<aB.c<b<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a、b、c分别是角A、B、C的对边,向量$\overrightarrow{a}$=(4,2cos2A),$\overrightarrow{b}$=(1+cosA,1).$\overrightarrow{a}$$•\overrightarrow{b}$=1.若a=$\sqrt{19}$,b+c=5.
(1)求角A的大小;
(2)求b、c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数f(x)=$\sqrt{{2}^{{x}^{2}-2ax+9}-1}$的定义域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知平面α∥平面β,直线a∥α,直线b∥β,那么a与b的关系必定是(  )
A.平行或相交B.相交或异面C.平行或异面D.平行、相交或异面

查看答案和解析>>

同步练习册答案