精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中(为坐标原点),已知两点,且三角形的内切圆为圆,从圆外一点向圆引切线为切点。

(1)求圆的标准方程.

(2)已知点,且,试判断点是否总在某一定直线上,若是,求出直线的方程;若不是,请说明理由.

(3)已知点在圆上运动,求的最大值和最小值.

【答案】(1) .

(2) 在定直线.

(3) 最大值为,最小值为

【解析】分析:由题意结合几何关系可得圆的半径圆心坐标为则圆的标准方程为

由题意结合可得在定直线上,

)设由题意可得 ,结合几何意义可知最大值为,最小值为

详解:)设圆的切点为,连结

显然有四边形为正方形,

设圆半径为

化简有

满足

在定直线上,

)设

由几何意义可知表示到点距离平方,

在圆最大值为

最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三棱台ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求证:BC1⊥平面AA1C1C
(2)点D是B1C1的中点,求二面角A1﹣BD﹣B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生于瑞士的数学巨星欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:“三角形的外心、垂心和重心都在同一直线上。”这就是著名的欧拉线定理,在中,分别是外心、垂心和重心,边的中点,下列四个结论:(1);(2);(3);(4)正确的个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列满足

1的通项公式;

2求和:

【答案】1;(2

【解析】试题分析:(1)根据等差数列 列出关于首项公差的方程组,解方程组可得的值,从而可得数列的通项公式;(2)利用已知条件根据题意列出关于首项公比 的方程组,解得的值求出数列的通项公式,然后利用等比数列求和公式求解即可.

试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

从而.

型】解答
束】
18

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,在底面中, 的中点, 是棱的中点, = = = = = =.

(1)求证: 平面

(2)求证:平面底面;

(3)试求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处有极值,求的值;

(2)若对于任意的上单调递增,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,点在直线.数列满足,前9项和为153.

(1)求数列的通项公式;

(2),数列的前项和为,求及使不等式对一切都成立的最小正整数的值;

(3),问是否存在,使得成立?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】”是“对任意的正数 ”的( )

A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件

【答案】A

【解析】分析:根据基本不等式,我们可以判断出”?“对任意的正数x2x+≥1”对任意的正数x2x+≥1”?“a=

真假,进而根据充要条件的定义,即可得到结论.

解答:解:当“a=时,由基本不等式可得:

对任意的正数x2x+≥1”一定成立,

“a=”?“对任意的正数x2x+≥1”为真命题;

对任意的正数x2x+≥1时,可得“a≥

对任意的正数x2x+≥1”?“a=为假命题;

“a=对任意的正数x2x+≥1充分不必要条件

故选A

型】单选题
束】
9

【题目】如图是一几何体的平面展开图,其中为正方形, 分别为 的中点,在此几何体中,给出下面四个结论:①直线与直线异面;②直线与直线异面;③直线平面;④平面平面

其中一定正确的选项是( )

A. ①③ B. ②③ C. ②③④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面,底面为长方形,且的中点,作于点.

(1)证明:平面

(2)若三棱锥的体积为,求二面角的正弦值.

查看答案和解析>>

同步练习册答案