精英家教网 > 高中数学 > 题目详情

从正方体的八个顶点中任取四个点,在能构成的一对异面直线中,其所成的角的度数不可能是

A.         B.         C.          D.

A.


解析:

两条棱所在直线异面时所成角的度数是900;面对角线与

棱异面时所成角的度数是450 或  900;两条面对角线异面时所成

角的度数是602或900;体对角线与棱所在直线异面时所成角的度数是;    

体对角线与面对角线异面时所成角的度数是900

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、从正方体的八个顶点中任意选择4个顶点,它们可能是如下几种几何体(或平面图形)的4个顶点,这些几何体(或平面图形)是
①③④
(写出所有正确的结论的编号)
①矩形;
②不是矩形的平行四边形;
③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;
④每个面都是等边三角形的四面体.

查看答案和解析>>

科目:高中数学 来源: 题型:

10、从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

从正方体的八个顶点中任取4个,其中4点恰能构成三棱锥的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•郑州三模)从正方体的八个顶点中任取四个点连线,在能构成的一对异面直线中,其所成的角的度数不可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为_______。

查看答案和解析>>

同步练习册答案