精英家教网 > 高中数学 > 题目详情
(2013•温州二模)已知矩形ABCD中,AB=2,AD=5.E,F分别在AD,BC上.且AE=1,BF=3,沿EF将四边形AEFB折成四边形A′EFB′,使点B′在平面CDEF 上的射影H在直线DE上.
(I)求证:A′D∥平面B′FC
(II)求二面角A′-DE-F的大小

分析:(I)利用线面平行的判定定理可得AE∥平面BFC,DE∥平面BFC,又AE∩DE=E.由面面平行的判定定理可得平面AED∥平面BFC,再利用面面平行的性质定理可得线面平行;
(II)建立如图所示的空间直角坐标系,利用B在平面CDEF上的射影H在直线DE上,设B(0,y,z)(y,z∈R+)及F(2,2,0),BE=
5
,BF=3,可得到点B的坐标,分别求出平面ADE的法向量、平面CDEF的法向量,利用法向量的夹角即可得到二面角.
解答:(I)证明:∵AE∥BF,AE?平面BFC,BF?平面BFC.
∴AE∥平面BFC,
由DE∥FC,同理可得DE∥平面BFC,
又∵AE∩DE=E.
∴平面AED∥平面BFC,
∴AD∥平面BFC.
(II)解:如图,过E作ER∥DC,过E作ES⊥平面EFCD,
分别以ER,ED,ES为x,y,z轴建立空间直角坐标系.
∵B在平面CDEF上的射影H在直线DE上,设B(0,y,z)(y,z∈R+).
∵F(2,2,0),BE=
5
,BF=3.
y2+z2=5
4+(y-2)2+z2=9
解得
y=1
z=2

∴B(0,1,2).
FB
=(-2,-1,2)

EA
=
1
3
FB
=(-
2
3
,-
1
3
2
3
)

设平面ADE的法向量为
n
=(x0y0z0)
,又有
ED
=(0,4,0)

n
EA
=0
n
ED
=0
-
2
3
x-
1
3
y+
2
3
z=0
4y=0
,令x=1,则z=1,y═0,得到
n
=(1,0,1)

又∵平面CDEF的法向量为
m
=(0,0,1)

设二面角A-DE-F的大小为θ,显然θ为钝角
cosθ=-|cos<
n
m
>|
=-
2
2

∴θ=135°.
点评:熟练掌握线面平行的判定定理、面面平行的判定和性质定理、通过建立空间直角坐标系利用两个平面的法向量的夹角求二面角是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•温州二模)“m=
5
”是“直线x-2y+m=O与圆x2+y2=1相切”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州二模)在△ABC中,角A,B,C所对的边分别为a,b,c,若A=30°,B=105°,a=1.则c=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州二模)若某几何体的三视图如图所示,则此几何体的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州二模)下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州二模)已知2a=3b=6c则有(  )

查看答案和解析>>

同步练习册答案