精英家教网 > 高中数学 > 题目详情

(本小题11分)如图,三棱锥C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分别是BC、AC的中点。

(1)求证:AC⊥BD;
(2)若CA = CB,求证:平面BCD⊥平面ABD
(3)在上找一点M,在AD上找点N,使平面MED//平面BFN,说明理由;并求出的值

(1)见解析;(2)见解析;(3)2.

解析试题分析:(1)取中点,连接 
中CB = CD,的中点,所以
同理中,,所以平面,所以………3分
(2)当CA = CB时,中,的中点,所以
,所以,所以,…………5分
,又,所以平面
平面BCD,
所以,平面BCD⊥平面ABD………………………………7分
(3)取CF中点M,连接MD,ED,在AD上取点N,使得 ……………9分
因为M是CF中点,E是BC中点,所以ME//BF,又
所以MD/NF,所以平面MED//平面BFN   …………………11分
考点:线面垂直的性质定理;面面垂直的判定定理;线面平行的判判定定理。
点评:本题主要考查了“线与平面垂直”与“线与线垂直”的相互转化,线与平面的平行的判定及“线线平行”与“线面平行’的转化,考查了空间想象能力、推理论证的能力及对定理的熟练掌握。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图所示,在矩形中,的中点,F为BC的中点,O为AE的中点,以AE为折痕将△ADE向上折起,使D到P点位置,且

(1)求证:
(2)求二面角E-AP-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在如图的多面体中,⊥平面,的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为 已知

(Ⅰ)设点的中点,证明:平面
(Ⅱ)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在四棱锥中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点
(1) 证明//平面
(2) 证明⊥平面
(3) 求二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(20) (本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为.M为线段PC的中点.

(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)如图所示,在四棱锥中,平面
平分的中点.

求证:(1)平面
(2)平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,为空间四点.在中,.等边三角形为轴运动.
(1)当平面平面时,求
(2)当转动时,证明总有

查看答案和解析>>

同步练习册答案