精英家教网 > 高中数学 > 题目详情
3.若(3x-1)55=a0+a1x+…+a55x55,求|a1|+|a2|+…+|a55|.

分析 由题意可得|a1|+|a2|+…+|a55|,即(3x+1)55 的各项系数和减去a0的绝对值,令x=1,即可求得结果.

解答 解:∵(3x-1)55=a0+a1x+…+a55x55,∴a0=-1,
∴|a1|+|a2|+…+|a55|=|a0|+|a1|+|a2|+…+|a55|-|a0|,即(3x+1)55 的各项系数和减去a0的绝对值,
故|a1|+|a2|+…+|a55|=455 -1.

点评 本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.x2+y2-2x+4y=0的圆心坐标是(1,-2),半径是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x-2|.
(1)解不等式f(x+1)+f(x+2)<4;
(2)若?x∈R使得f(ax)+|a|f(x)≤4成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{g(x),x>0}\end{array}\right.$,若g(x)是奇函数.则g(x)=-2-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=x3-ax2-x+6在(0,1)上单调递减,则实数a取值范围是(  )
A.a=1B.a≥1C.a≤1D.0<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,0<x≤2}\\{f(4-x),2<x<4}\end{array}$,若当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,不等式kx3x4+x12+x22≥k+11恒成立,则实数k的最小值为 (  )
A.$\frac{9}{8}$B.2-$\frac{\sqrt{3}}{2}$C.$\frac{25}{16}$D.$\sqrt{3}$-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$\frac{cos2α}{sinα-cosα}$=-$\frac{1}{2}$,则sin(α+$\frac{π}{4}$)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在极坐标系中,点(1,$\frac{π}{4}$)与点(1,$\frac{3π}{4}$)的距离为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,输出的S值为(  )
A.16B.8C.4D.2

查看答案和解析>>

同步练习册答案